
IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

SIMULATION ENHANCEMENT OF IMPROVING FPGA
DEBUG METHODOLOGIES BY USING HAMMING SEC-

DAED-TAED CODE
1 A. Inna Mary, 2 Dr. VanajaShivakumar

1, 2 M. Tech Department of ECE, Professor & HOD
1, 2 Hindustan University,

1, 2 Padur, Tamilnadu,
1, 2 India.

Abstract:-
In the debug system, logic

analyzer is built into FPGA. The debug
module allows non-interfering real time
debugging of software for the SoC
microcontroller. Post –processing and
analyzing the data is invaluable for system
debugging. The prototype using trace-
buffers to note a subset of internal signals
into an on-chip memory for subsequent
analysis. In this paper, high frequency
methods are not suited for monitoring the
fault occurrence in trace buffers. Therefore,
low frequency method which is used to
detect and correct the faults in trace buffers.
The internal stages of the circuits are
monitored and identified the faults and these
faults are stored in the separate memory for
analyzing the signals. In the proposed, the
two methodologies are used.1) Finite State
Machine (FSM) and 2) Hamming codes.
The clock pulses are then divided by using
clock divider. The finite state machine is
used to monitor the errors and also the
hamming codes are used to detect and
correct the errors. Thus the tracing buffers
are performed to monitor the signal state on
FPGA.

Keywords: - Finite State Machine (FSM),
Field Programmable Gate Array (FPGA),
Central Processing Unit (CPU).

1. INTRODUCTION
The capacities of FPGAs grow,

fortifying that a design is functionally
correct (verification and validation) and
detecting the sources of any observed
incorrect behavior (debugging) has become
increasingly difficult. Logic verification is
known to be one of the major challenges of
contemporary chip design. Simulation based
techniques have the most common
verification approaches due to their notable
flexibility. Field programmable gate array
device interconnect is designed to match
chip interconnect exactly and the
partitioning of the chip logic onto the
multiple FPGA devices generally done by
hand. To increasing the device capacity as
well as limited on-chip observability.
Verification and debugging both make
comprehensive use of software simulators.
Simulation gives full-chip visibility and fast
turnarounds between design changes.
However, the simulation of big designs can
be extremely slow. [1] For an example, Intel
announced that software simulations of

IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

their core i7 chip ran one billion times
slower than on real silicon, with the addition
of all their simulation efforts on a big server
farm culminating in no more than a few
minutes of actual of actual chip operation
[2]. The design can be run at speed meaning
much deeper traces are possible. Testing the
FPGA in-situ may allow realistic input
stimuli, the device can be connected to the
other chips in the target system. A primary
challenge is the limited observability of the
signals on-chip with hardware validation.
FPGA allow a “snapshot” of all state bits to
be taken, which can be read-out using a
JTAG interface, however, this does not
permit easily for tracing signals over time.
The trace buffers are memories that record
the activities of particular signals over a
number of cycles. Trace buffer technology
has been proposed to track a small number
of internal state elements within a capture
window when the chip is operating. These
signals are selected for tracing at the design
stage and the traces are examined at the
post-silicon stage to debug logic errors. The
collected traces are used to restore as many
other state elements within the capture
window. In addition to trace buffers, these
tools instantiate connections that connects
the traced signals to these buffers. This has
some drawbacks: 1) recompilation can be
slow, especially in prototyping systems
consisting of multiple FPGAs, 2) a
recompilation may cause timing differences
which may obscure the bug that was being
sought and 3) additional routing stress may
cause a previously routable design to
become unroutable.
In this paper, finite state machine and
hamming code methodologies are used to
monitor the error and also detect and correct
the error occurs in trace buffers. At low
frequency, which is used to detect and
correct the faults. The detected and
corrected faults that are stored in the
separate memory for analyzing the signals.

2. LITERATURE REVIEW
[Ko. H.F. et al, 2009] described the

algorithms in silicon debug for state
restoration and trace-signal selection for
data acquisition.. Silicon debug can be
divided into two main steps data acquisition
and analysis. An accelerated algorithm for
restoring circuit state elements from the
traces collected during a debug session by
exploiting bitwise parallelism is presented.
New metrics that guide the automated
selection of trace signals, which can
improvethe real-time observability during
in-system debug, was also introduced. To
detct and correct the faults that escape pre-
silicon verification here, the accelerated
algorithms for restoring circuit state
elements. State restoration, the algorithm
only needs to check if data can be
redesigned at a circuit node and no
branching and backtracking will be done if
unsuccessful, undefined values will be
concluded. [Raman .S. et al, 2011]
explained timing constrained routing
algorithm for symmetrical FPGAs which
incorporates a novel incremental routing
strategy. Experimental results confirm that
the algorithm reduces delay along the
longest path in the circuit, uses routing
resources efficiently and requires low CPU
time. The incremental routing technique has
a significant effect on both the timing
performance and routability. The benchmark
circuits demonstrate that the algorithm
performs very well with respect to timing,
routability, resource utilization and
computation. [Hung .E. et al , 2012]
explained the capacities of FPGA increases
its verification and validation is difficult so,
on chip observability is used in order to
enhance on-chip observability , but doing so
often requires re-compiling the whole design
for each new trace configuration. To explore
the limitations of incremental-synthesis for
trace –buffer insertion, and to execute CAD
optimizations exclusive to this application
for improving runtime and routability is
presented. During incremental tracing, there

IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

exists far more flexibility than with
functional design changes- a traced signal is
not constrained to reaching one particular
sink.
[Asaad .S. et al, 2012] described the cycle-
accurate and cycle-reproducable large-scale
platforms of FPGA that is designed from the
ground up to accelerate logical verification
of the Bluegene/ Q compute node ASIC, a
multi-processor SOC implemented in IBM’s
45nm SOI CMOS technology. The
challenges for constructing such large-scale
platforms of FPGA, including design
partitioning, clocking & synchronization,
and debugging support, as well as
addressing these challenges without
sacrificing cycle accuracy and cycle
reproducibility.
[Li .M. 2014] explained the post silicon
debug is the last step of debug process for
faster and accurate debug an hybrid
approach is employed. Here, the State
Restoration Ratio (SRR) is used to measure
the quality of a set of selected trace signal
.Metric-based algorithms utilize metrics
which permit approximating the capability
of a candidate trace signal to restore the
untraced state elements while taking into
account the restoration that can be made
from a subset of already –selected trace
signals.

3. FI NITE STATE MACHINE
Finite State Machines (FSM), used in

sequential logic, have outputs that depend
on both the current input as well as the
history of the input.FSM is composed of a
combinational logic unit and flip-flops
placed in such a way as to maintain state
information. FSM generating sequences of
control signals instructs data path what to do
next. In Mealy machine, sequential system
where output depends on current input and
state. In Moore machine, sequential system
where output depends only on current state.
Finite state machine is used to monitor the
faults in trace buffer. The state diagram of
finite state machine as shown in fig.1.

Figure .1 State diagram of finite state
machine

4. HAMMING ENCODER AND
DECODER

Hamming code is an Error
Correction Codes (ECCs) in which single bit
error can be successfully detected and
corrected. It can detect up to three adjacent
bit errors but can correct only single bits
error. In mathematically, hamming codes are
characterized by the following parameters,

12 mn (1)

mnk (2)

3min d (3)

where, n is the block size, k is the number of
information bits, dmin is the hamming
minimum distance and m is the parity check
bits. For a single bit error correction, dmin is
three that means three parity bits are used to
detect and correct a single bit error. The
parity bit is further extended for more
number of adjacent bit error detection. The
process of hamming encoder is as follows:
(1) Number the all position of input bits
starting from 1 to m, where m is the last
position of the bit. (2) Convert all the
positions are in their binary form as 1, 10,
11, 100, 101 etc. (3) All bit positions that are
powers of two are considered as a parity
bits.

IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

Step 1: Check 1 bit and skip 1 bit steps are
followed such as 1, 3, 5, 7, 9.....

Step 2: Check 2 bits and bound 2 bits steps
are followed such as 2, 3, 6, 7, 10,

11…..

Step 3: Check 4 bits and skip 4 bits steps are
followed such as 4, 5, 6, 7, 12,

13, 14, 15.....

Step 4: Check 8 bits and skip 8 bits steps are
followed such as 8-15, 24-31,

40-47.....

Parity check bits for input bits are
obtained when combined results coming
from all steps. The code word for input bits
is obtained when locating parity check bits
into respective places (that are powers of
two). A lexicographic hamming matrix for
8-bits is illustrated in equation (4). The
transpose of lexicographic hamming matrix
is known as Syndrome matrix. Hamming
distance of this vector is 4. Therefore, from
this matrix, we can detect up to two bit error
and can correct a single bit error.

H=0 0 0 0 0 0 0 1 1 1 1 10 0 0 1 1 1 1 0 0 0 0 10 1 1 0 0 1 1 0 0 1 1 01 0 1 0 1 0 1 0 1 0 1 0
(4)

Hamming decoding process is as follows:

Step 1: To multiply the code word with
syndrome matrix.

Step 2: Results from step 1 called as
syndrome vector. If all the bits of syndrome
vector are zero, then there will be “no error”
in the decoded output. If any one of the bits
is non-zero, then there will be “error” in
transmission. If the syndrome vector is in
from (0000) to (1100), then there will be a
“single error” in transmission and with the

help of syndrome vector, we can easily
correct it. If the syndrome vector is in from
(1101) to (1111), then there will be only
detect the double bit adjacent error, but
cannot correct it.

Using an example for Hamming
code (12, 8), data bits (01011100) are coded
as (100010101100). Multiplication of code
word (100010101100) and syndrome matrix
is given as (0000), which is called as
syndrome vector. All the bits of syndrome
vector are zero; hence, there will be no error
in data transmission. If the fifth bit of code
word is flipped as 0. Hence, code word as
(100000101100), then the syndrome vector
obtained as (0101). The syndrome vector
takes 5th location of syndrome matrix.
Hence, there is possibility to change the fifth
location of code word. In this way hamming
codes can detect and correct a single bit
error.

5. SYSTEM ANALYSIS
A. Trace Buffer

On the FPGA, trace buffers are
formed from a memory resource .Trace
buffers record a limited-size history of the
signals connected to them during regular
device operation. Designers verify
functionality or hunt bugs by properly
adjusting the trigger conditions and
analyzing the trace buffer data. Multiple
trace buffers are distributed to observe and
record nearby user signals. The trigger unit
requires a region of logic to detect
conditions. Incremental distributed trigger
insertion, we distribute the logic elements
that make up the trigger function across
logic elements that are not used by the user
circuit. These logic elements may not be
contiguous. Functional definition errors can
be doubly difficult to find since the designer
has not understand a particular requirement,
so the fault can be overlooked even when
looking carefully at the important details of
the design. An example of a functional
definition error would be where a state

IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

machine transition doesn’t end up in the
right state.

B. Incremental Trace Insertion

The proposed trace buffers and a
trigger unit are inserted incrementally in an
already placed-and-routed design, to
increase the observability of FPGA circuits.
It refers to the already placed-and-routed
design as the original circuit or user circuit
and the trace buffers and trigger that are
incrementally inserted as the debug system.
The incrementally inserting the debug
system because it will reduce the impact on
the original circuit’s area, placement,
routing, and timing. Incremental insertion
allows us to adjust the size of the debug
system to fit into whatever the original
circuit does not use. The amount of trace
buffers and trigger logic we can insert will
be influenced by the area of the original
circuit.

Figure.2. Design and debug flow
demonstrating how incremental compile
reduces the time

The fig.2 shows how the time taken
for the execution has been reduced after
using incremental technique. The goal of
incremental synthesis is generally to modify
the functionality of an existing circuit with
minimal changes to its current placement
and routing. The placement and routing of
trace buffers and trigger unit is restricted to
resources unused by the circuit.

C. Block diagram of FPGA debug trace
buffer

The fig.3 is the block diagram of
FPGA debug trace buffer. From the clock
generator, the input clock pulse gets
generated. These clock pulses are the
divided using a clock divider. The input data
is given to circuit and this produces the
corresponding output. The internal states of
the circuits are stored using a trace buffer.
Various trace buffers are used for storing the
various signal states. If any error occurs, it
will be stored in a separate memory and
monitored. The power supply is the input
supply given to the hardware. The system
clock is the basic clock pulse given to the
hardware and the hardware reset is the initial
condition for resetting of the hardware.

Figure .3. Block diagram of FPGA debug
trace buffer

D. Internal Circuit diagram of trace
buffers

Figure.4 Internal Circuit Diagram of
Trace Buffers

IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

The fig.4 shows the internal circuit diagram
of trace buffers. Here the circuit is used in
sequential circuit. Sequential logic is a type
of logic circuit, in which the output depends
on present input and previous output. In a
combinational logic, the output depends on
the present input. Sequential logic has state
(memory) while the combinational logic
does not. A sequential circuit is to construct
finite state machines, a basic building block
in all digital circuitry, as well as memory
circuits. Digital sequential circuits are
divided into two types, synchronous and
asynchronous types. The state of the device
changes only at discrete times in response to
a clock signal, in synchronous circuit. The
state of the device can change at any time in
response to changing inputs , in
asynchronous circuits. Memory is not used
in combinational circuit. Hence the previous
state of input does not have any effect on the
present state of the circuit. But sequential
circuit has memory. Based on the input, the
output can vary. This type of circuits uses
previous input, output, clock and a memory
element.

6. PROPOSED HAMMING CODE
BASED FPGA DEBUG TRACE
BUFFER

In this paper, proposed hamming
code based FPGA debug trace buffer is
designed. In the hamming code, which is
used to detect and correct the error in trace
buffer. The internal stages of the circuits are
monitored and identified the faults and these
faults are stored in the separate memory for
analyzing the signals. Proposed hamming
code based PPGA debug trace buffer is
shown in fig.5.The internal circuit of three
outputs are given to the input of 3:8 decoder.
The 3:8 decoders are given to the hamming
encoder. Hamming encoder is used to detect
and correct the SEC-DAED-TAED errors.
In hamming encoder, 8 bit is converted into
12 bit and the 12 bit is given to the input of
hamming decoder. Hamming decoder is
given to the 8:3 encoder. Finally, 8:3

encoders is given to the detected and
corrected output. When compared to finite
state machine, hamming code gives a better
performance. The faults are monitored and
corrected in trace buffer only at low
frequency.

Figure.5 Proposed Hamming code based
FPGA debug trace buffer

7. RESULTS AND DISCUSSION
The design of proposed hamming

code based FPGA debug trace buffer has
been made by using Verilog Hardware
Description Language (Verilog HDL). The
simulation results have been evaluated by
using ModelSim 6.3C. The simulation
output for generating glitches at
frequency_3(2MHz) is shown in fig.6.

Figure.6 Simulation output for generating
glitches at frequency_3 (2MHz)

IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

The simulation output for generating
glitches at frequency_4(1MHz) is shown in
fig.7.The simulation output for detecting
adjacent bit error using hamming code is
shown in fig.8. Designing the circuit and
debugging it and locating the errors by
means of signal tracing. The signal tracing
concept is applied to analyze the internal
signals. The occurrences of glitches, the
trace buffers are used for storing the internal
signals during debug. Trace buffers are also
used for locating errors.

Figure.7 Simulation output for generating
glitches at frquency_4 (1MHZ)

Figure.8 Simulation output for detecting
adjacent bit error using hamming code

CONCLUSION
In this paper, the proposed hamming

code based FPGA debug trace buffer has
been designed through Very Large Scale
Integration (VLSI) design environment. In
these design is used to detect and correct the
errors in a trace buffer. Finite state machine
is used to only detect the error. Hamming
code which is used to detect and correct the
error. Hamming codes are detected and
corrected the SEC-DAED-TAED code.
These codes are used to avoid the wrong
information passes through the space
communication. The SEC-DAED-TED is
required to add one parity bit, which takes
more amount of computational time for
detecting the error. When compared to FSM,
hamming code gives a better performance.
For improving the FPGA debug method, by
using hamming SEC-DAED-TAED codes.
The corrected errors are stored in a memory
of the circuit. The trace buffers are
performed to monitor the signal state of
FPGA.

REFERENCES
[1] E. Hung and S. J. E. Wilton,
“Limitations of incremental signal tracing
for FPGA debug,” in Proc. Int. Conf. Field
Program. Logic Appl., Aug. 2012.
[2] H. F. Ko and N. Nicolici,
“Algorithms for state restoration and trace-
signal selection for data acquisition in
silicon debug,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 28, no. 2,,
Feb. 2009
[3] Min Li and Azadeh Davoodi, “A
Hybrid Approach for Fast and Accurate
Trace Signal Selection for Post-Silicon
Debug”2013
[4] S. Raman, c.l liu (2011), “A
Timing-Constrained Incremental Routing
Algorithm for Symmetrical FPGAs
Symmetrical FPGAs”
[5] S. Asaad, R. Bellofatto, B. Brezzo,
C. Haymes, M. Kapur, B. Parker, T.
Roewer, P. Saha, T. Takken, and J. Tierno,

IJRSET March 2016 Volume 3, Issue 3 Pages: 22-30

“A cycle-accurate, cyclereproducible multi-
FPGA system for accelerating multi-core
processor simulation,” in Proc.
ACM/SIGDA Int. Symp. Field Program.
Gate Arrays, 2012
[6] Xilinx. (2012, Dec.). ChipScope Pro
12.3, Software and Cores, User Guide,
Sanjose,CA,USA[Online].Available:http://w
ww.xilinx.com/support/document.

