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Abstract:-
In VLSI analytical placement, Half-

perimeter wirelength (HPWL) is used as
objective function. Inspired by logarithm-sum-
expontial (LSE) wirelength model, in this paper
we have introduced a smooth function for HPWL
and studied its convergence properties, derived
error bound and  numerical stability.
We also compare its runtime with widely used
LSE and recently proposed weighted
average(WA) [3]and (γ,p)[8] wirelength models.
The runtime of the model is smaller than LSE
and ABS model but comparable with WA model.
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1. INTRODUCTION
In physical design of VLSI, placement is

a challenging still today. Here cells physical
locations are optimally determined by analytical
placement techniques framing the placement
problem as an optimization problem with
constraints such as congestion, routing delay,
power etc the objective function for placement is
HPWL and need to be smooth and convex.
Recent widely used analytical placers are Aplace
[5], mPL6 [2], FastPlace [10], NTUPlacer [1],
Kraftwerk [9] and SimPL [6]. Analytical placers
like Aplace [5], mPL6 [2], NTUPlacer [1] use
HPWL as their only objective due its simplicity
and ease of calculation.
Various smooth functions for HPWL are
proposed in the literature such as [5], [7], [3] and

[8]. which are often used by analytical placers
stated above.
LSE and WA models are very popular and in
analytical placement in this work we propose an
iterative smooth approximation to HPWL
function which can be applied to analytical
placement.

A. Contributions
Our contributions in this paper are listed

below.
1) We have proposed a smooth approximation to
the max function. Using the smooth max
function, we derive an iterative smooth
wirelength function for half-perimeter wirelength
model.
2) We study the convexity, convergence
properties and derive an upper bound of errors of
max function.
3) We also discuss about implementation issues,
numerical stability of the proposed wirelength
model and runtime for two variable max function
for various models such as :
LSE model, absolute wirelength model
(ABSWL) [7], WA model and (γ, p) models.
The remainder of this paper is organized as
follows.
Section II discusses existing wirelength models.
Section III details the new wirelength model,
studies its convexity, convergence properties and
derives an upper bound of errors. Section IV
presents runtime consideration. Finally, the
conclusions and future scope of the work are
given in Section V.
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2. HPWL FORMULATION AND
REVIEW OF EXISTING
WIRELENGTH MODELS

The circuits of a placement are denoted
by a hypergraph H(V, E), where V is the set of
fixed or movable blocks or pads, and E is a set of
nets. If we denote the bottom left corner of a
block in chip by (xi, yi)(1 ≤ i ≤| V |), then the
HPWL of a net e is given by

max{ } min{ } max{ } min{ }e i i i i
i e i ei e i e

HPWL x x y y
  

    (1)

Then the total HP W L of a placement is given by
sum of the HPWL of all nets.

e
e E

HPWL HPWL


 (2)

A. Review of Existing HPWL Wirelength
Models The wirelength function given by
(Eqn(1) and (2)) is hard to minimize due to the
presence of max and min functions, as these
functions are not differentiable. Analytical placer
reformulates HPWL by replacing these functions
by their smooth approximations before the
placement problem is solved by non linear
mathematical programming techniques. There are
many smooth approximations for max and min
functions. Some of them are discussed below.
1. Logarithm-Sum-Exponential Wirelengt
Model(LSE)[11]
For real parameter γ → 0, smooth
approximation to HPWL of a net e is given by

/ /ln( ) ln( )i ix x
e

i i

LSEWL e e      
/ /ln( ) ln( )i iy y

i i

e e     (3)

This is a popular wirelength model for HPWL
and is used by analytic placers discussed in [1],
[5],[2].
2. Weighted Average Wirelength Model
(WAWL)[3]

If x and y coordinates of blocks of a net e are
denoted by xe and ye respectively, then the
weighted average HPWL of a net is given by

max min( ( ) ( ))e e eWAWL X x X x 
 max min( ( ) ( ))e eY y Y y (4)
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and γ0.
The authors in Theorem 2[3], proved that the
errors upper bounds of WAWL model were less
than the errors upper bounds of LSE wirelength
model.
3. (γ, p)-Wirelength Model[8]
If x and y coordinates of blocks of a net e are
denoted by xe and ye respectively, then for real
parameters γ → 0, p → ∞, (γ, p)-wirelength
model of a net e is given by

( , ) ( , )( ( ) ( )p p
e eWAWAL X x X x   

( , ) ( , )( ( ) ( ))p p
e eY y Y y    (5)
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The authors in Theorem 5[8], proved that the
errors upper bounds of (γ, p)-wirelength model
were less than the errors upper bounds of WAWL
model and LSE wirelength model. Interestingly,
(γ, p)-wirelength model reduces to WAWL
model, when p = 1.
4.Absolute Wirelength Model(ABSWL)[7] For
real parameter β → ∞, an approximation to the
two variable max function max(x1, x2) is given by

ABSBMAX(x1,x2) =
1

2
(x1+x2+ 1 2x x )

≈ 1 2 1 2

1 1
( (ln 2 ln(1 cosh( ( )))))

2
x x x x


    

Generalizing ABSBMAX(x1, x2) to n variables
max function, smooth formulation for HPWL can
be obtained. In [7] it is shown through simulation
that estimation upper bound error
of ABSWL model is less than LESWL model.

3. PROPOSED WIRELENGTH
MODEL

In this section, we present an iterative
smooth wirelength function for HPWL providing
smooth approximations to maximum and
minimum functions of equations (1) and (2). Let
xe = (x1, x2, ...xn) and ye = (y1, y2, ...yn) be x and y
be coordinates of net e respectively. Without loss
of generality assumes these coordinates are
positive real constants. Then for real parameters
p → +∞ define weighted average ofxeby

Xp(xe) = 1

1
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(8)

We call Xp(xe) as p-mean of xe.
A. Convergence Properties
Since Xp(xe) is twice differentiable for xi ∈ xe,
and the derivative is positive(i.e. the Hessian
matrix is positive definite), We have the
following Lemma 1.

Lemma 1. Xp(xe) is strictly convex and
continuously differentiable functions of xe.

Theorem 1. If xmin and xmax are minimum and
maximum of x1, x2, ...xn. Then we have
(i) limp→+∞ Xp(xe) = xmax

(ii) limp→−∞ Xp(xe) = xmin

Proof: Without loss of generality let us assume x1

≥ x2 ≥... ≥ xn. Now we have

Xp(xe) = x1

1
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Making p → +∞ Theorem 1(i) follows. Similarly
Theorem 1(ii) follows.
Using p-mean smooth approximation to HPWL
model is given by

       )(
e E

p p p p
e e e eX x X x Y y Y y



  
Where Y p(ye) is the p-mean of ye and X−p(xe), Y
−p(ye) are corresponding approximations for xmin

and ymin respectively.
Let ErrXp(xe) be estimation error of p-mean of x
coordinates of net e respectively. Then we have
the following upper bounds error.
Theorem 2: 0 ≤ ErrXp(xe) ≤

1
max min1 (( / ) ) /p

x

x x n


where ∆x = xmax − xmin.
Proof : Let us assume x1 ≥ x2 ≥ ... ≥ xn and denote
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∆xi = (x1 − xi). Now the error expression for
maximum function for net e by p-mean is given
by
ErrXp(xe) = x1 − Xp(xe)

=
1
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(9)

Inorder to get an upper bound of error, let us
differentiate equation (9) partially with respect to
xi for (2 ≤ i ≤ n) and make them equal to 0’s.
That is for any i, ∂ ErrXp*(xe)/∂xi = 0, implies

1

1

1
1

2

( )

n
p

i
i

n
p

i i
i

x

x x x














=

1

( 1)

( )( 1)i i

p

x x x p


   

(10)

Now solving the system of equations (10) for
2 ≤ i ≤ n, one can conclude that error is
maximum when x2 = x3 =... = xn. Using x1 = xmax,
x2 = x3 = ... = xn = xmin, from equation (9)

we have ErrXp(xe) =
 

1 1
max
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where ∆x = xmax − xmin.
Similarly we can have the same bounds of error
for minimum function ErrX-p*(xe). From the
definitions of maximum and minimum
functions(See Theorem 1), we have
ErrXp*(xe) ≤ xmax and xmin ≤ ErrX-p*(xe ). This
implies ErrXp(xe) ≥ 0. Hence Theorem 2
follows. We have used same line of proof
adopted for proving Theorem 1 shown in [3].

4. IMPLEMENTATION AND
RESULTS

In this section we shall discuss the choice
of parameter p of p-mean function, which will
keep the implementation numerically stable.

Then we compare the runtimes of two variables
wirelength models.

A. Choice of p
If datatype double is used to represent

wirelength, then the largest value double can take
is 1.797E ∗ 10308 ≈ e710. Since for p-mean, xp can
not exceed this value, the largest value that p can
take is p ≤ 710/lnx. Though in theory p is to be
taken large, in practice, one need to scale down
the chip dimension W and H sufficiently so that
the implementation remain stable. To illustrate
the effect of p on wirelength model, we choose
ibm01 from ISPD 2004 fixed die benchmark
suite. Using 1550 × 1530 grids we place the
circuit using NTUPlacer[1]. Then we measure the
half perimeter wirelegth using exact calculations.
Without scaling the chip dimension the largest
value that p can take is 710 ln 1530. We choose p
slightly larger than this value . Then we steadily
increase the value of p and simultaneously scale
down the chip dimensions. The effect of larger p
on errors for this calculation is shown in Table I.
From table, it is evident that the errors go down
steadily as p increases.

TABLE 1: Effect of p on Approximation

B. Runtime Consideration
As 70% nets in most circuits are two

terminal nets, for these nets, analytical placer
calculates two-variable approximations to the
max function several times during its local
search.
Like [7] we also compare the runtimes for two-
variable maximum function for LSE, ABS, WA,
(γ, p)-mean and p-mean wirelegth models. For
this we generated 60 × 106 pairs of random real
numbers and passed them as arguments to these
two-variables maximum functions. The averaged
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runtimes over several experiments are
listed in Table II. From table one can see p-mean
and WA wirelngth models have least runtimes.

TABLE 2: Runtime of 2-Variable
Approximations

CONCLUSIONS AND FUTURE
WORK

We proposed an iterative wirelength
model for HPWL function and studies its
convexity, convergence properties and compared
its two variable function run time with existing
models. The runtime of the proposed model is
less than LSE, ABSWL and (γ,p) models. In
future we aim to study the effect on placement.
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