

International Journal for Research in Science Engineering and Technology

VLSI Based Minimized Composite S-Box and Inverse Mix Column for **AES Encryption and Decryption**

¹ J. Balamurugan, ² Dr. E. Logashanmugam
 ¹ Research scholar, ² Professor and Head,
 ¹ St. Peter's University, ² Sathyabama University,
 ^{1&2} Chennai, Tamilnadu, India.

Abstract:-

Advanced Encryption Standard (AES) is one of the best cryptography algorithms in secured data communication. Due to provide efficient security, AES consumes more hardware complexity and power consumption.

In addition, speed of the AES is low due to complexity in data flow path. Substitution Box (S-Box), Shift Rows, MixColumn multiplication and Add Round Key are the four fundamental steps in AES algorithm. Among those four steps, S-Box Inverse MixColumn multiplication and (decryption of MixColumn) are recognized as a high potential steps, because both S-Box and multiplication MixColumn consumes more hardware complexity and power consumption. In Enhanced Inverse MixColumn this paper, multiplications are used to reduce the hardware complexity of AES algorithm. In addition to enhanced Inverse MixColumn multiplications, architecture of composite S-Box is realized to minimize the hardware complexity of AES. Further minimized composite S-Box and enhanced Inverse MixColumn multiplication transformations are integrated into AES algorithm to increase the efficiency of AES in terms of less area utilization, high speed and low power consumption. Implementation of minimized AES composite S-Box and enhance inverse MixColumn transformations are done in the field of Very Large Scale Integration (VLSI).

Keywords: - Minimized Composite S-Box, Enhanced Inverse MixColumn transformation, Advanced Encryption Standard (AES), Reduced multiplication, Xtime Very Large Scale Integration (VLSI).

1. INTRODUCTION

In the perspective of technology growth, security also plays an important role. For instance, a mail delivery System and banking system has a large demand for best crypto algorithm. With ever increasing more mobile products, high speed and low on-chip area cryptography algorithms are necessary. Advanced Encryption Standard (AES) meets this requirement efficiently and this algorithm has been suggested by several endeavours to meet the best crypto mechanism. In AES encryption algorithm four types of transformations are suggested to encrypt the input data. these are

- Substitution Box (S-Box)
- Shift Rows () transformation •
- MixColumn () transformation •
- Add Round Key () transformation •

Similarly, reverse processes are suggested in decryption side of AES transformation, these are

- Inverse Shift Rows (Inv Shift Rows ()) •
- Inverse S-Box (Inv S-Box) •
- Inverse MixColumn (Inv MixColumn ()) •
- Add Round Key () •

Among those transformations, S-Box, Inv S-Box and Inv MixColumn transformations have more complexity than other transformation. Composite S-box has been suggested at the past, in which single circuit can control both S-Box and Inv S-Box transformations. Large endeavours have been designed the circuit of composite S-Box. The substitution table is generated by two processes named as Multiplicative Inverse (MI) and Affine transformation (AT). Most of the works uses the Look up Tables (LUTs) and Memories to process the S-Box of AES. But in [1], [5], [6] and [7], combinational logic circuits are used to provide the substitution table. This combinational circuit is based on both MI and AT techniques. In [1], Complementary Metal Oxide Semiconductor (CMOS) is used to design the combinational transformation is used improve to the performance of MixColumn transformation. Finally, both enhanced Inv MixColumn and minimized Composite S-Box are incorporated into AES encryption and decryption process.

2. AES ALGORITHM

AES is a Rijndael algorithm selected for data encryption standard by National Institute of Standards and Technology (NIST) in 1997. In general, it processes data blocks of fixed size using cipher keys of length 128, 196 and 256 bits. But, 128 bit AES are widely used for the design of encryption and decryption. Encryption of AES performs 4 types of transformation. (1) AES S-Box: Substitute the values which are derived from MI and AT transformation process. (2) AES Shift Rows (): Shift the Rows of bytes circularly in a

Figure: 1 Generalized AES structure (a)Encryption(b)Decryption.

Pages: 32-42

circuits. Similarly in [2], pass transistor logic is used to design the combinational circuit of S-Box. In [5], combinational circuits are designed for both MI and AT transformation. An improved class of S-boxes by direct inversion in composite field is presented in [10]. Further to improve the performances of composite S-Box, Wave Pipelining Technique is developed in [3]. Optimized MixColumn is designed in [4] and [8] with the help of resource utilization. Further, it could be enhanced in [9] to improve the Inv transformation. In MixColumn this paper, combinational circuit of composite S-Box is reduce further realized to the hardware complexity and power consumption. In addition, enhanced Inv MixColumn.

certain principle [2]. (3) AES Inv MixColumn (): Multiplication is performed by a constant matrix [9]. (4) AES Add Round Key: N number of round can be performed in different word length of AES. For instance, N = 10 for AES 128 bit cipher keys, N = 12 for AES 196 bit cipher keys and N = 14for AES 256 bit cipher keys. S-Box of AES is generated by taking MI of data input in the finite Galois Field GF (2^8) and it followed by an affine S-Box transformation. State bytes of the transformation results are shifted by Shift Rows transformation. Next to Shift Rows transformation, MixColumn transformation can be performed by making a multiplication with The constant matrix constant matrix. for transformation is illustrated MixColumn in equation (1).

$$\begin{bmatrix} s'_{0,c} \\ s'_{1,c} \\ s'_{2,c} \\ s'_{2,c} \\ s'_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 01 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix}$$
(1)

$$\begin{bmatrix} s'_{0,c} \\ s'_{1,c} \\ s'_{2,c} \\ s'_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 01 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix}$$
(1)

In Add Round Key transformation, 10 rounds of mentioned processes (above three transformations) can be performed, since here AES-128 bit length is considered for both encryption and decryption. Similar to encryption, decryption has reverse process of those mentioned four transformations such as Inv Shift Rows (), Inv S-Box (), Inv MixColumn (), and Add Round Key. The generalized AES flow for encryption and decryption is illustrated in fig. 1. Inv S-Box has same potential as S-Box transformation. But, MixColumn transformation has Inv more potential than MixColumn transformation. The constant matrix for Inv **MixColumn** transformation is illustrated in equation (2).

Pages: 32-42

Since, from above analysis, it is clear that, S-Box and Inv MixColumn transformation processes consumes more hardware complexity and power consumption than other part of AES. Therefore to improve the architecture of AES and security, enhanced Inv MixColumn and minimized structure of S-Box/Inv S-Box are designed in this paper. Multiplexor of Composite S-Box controls the operation of both S-Box and Inv S-Box. When performing encryption operation, Multiplexor gives the control signal as 0 and it allows the input to the Multiplicative Inverse and Affine Transformation blocks sequentially to perform the S-Box transformation. Similarly, when performing decryption operation, Multiplexor gives the control signal as 1 and it allows the input to the Inv Affine Transformation and Multiplicative blocks inverse sequentially. Multiplicative Inverse (MI) unit require more hardware than other blocks. The block diagram of Multiplicative Inverse is illustrated in fig. 3.

Figure: 2 Block diagram of Composite S-Box

Figure: 3 Block diagram of Multiplicative Inverse

As per the diagram, input and output of MI unit has 8-bit word length. The intermediate operation

for MI unit is shown in fig. 3. As per the rule, it requires inverse multiplication to compute the

Pages: 32-42

multiplicative inverse of any input. Inverse multiplication is indicated as x^{-1} . Before performing the inverse multiplications, having some logical operations to be convert the data into a certain formation. These logic computations disturb the performance of MI in terms of VLSI

concerns, i.e. requirement of less hardware complexity and lower power consumption. The block diagram of square of x (x^2) and Multiplication with constant (}) is illustrated in fig. 4 and fig. 5 respectively.

Figure: 4 Multiplication of X }

Multiplication of X^2 require the 4 number of XOR gates and Multiplication of X } requires the 4 number of XOR gates to produce the sufficient information which suited for inverse multiplication. Hence, 8 number of logic gates are required to produce the sufficient data for inverse multiplication. This multiplicative inverse block serves for both encryption and decryption.

4. PROPOSED COMPOSITE AES S-BOX

Composite AES S-Box for both AES encryption and AES decryption is represented in fig. 3. In that architecture, Multiplicative Inverse unit is recognized as a high potential for more hardware complexity. MI architecture consists of multiplication of X^2 and multiplication of X . The architecture of both X^2 and X is illustrated in fig. 4 and fig. 5 respectively. In this proposed

model, redundant operation of both multiplication of X^2 and multiplication of X are identified to further reduce the hardware complexity of Composite S-Box. Redundant operations of multiplications are identified through following equations.

Let as input of multiplication X^2 as q3, q2, q1 and q0. Similarly, corresponding output of multiplication of X^2 as k3, k2, k1 and k0 respectively. These should be derived with the help of fig. 4. Equation representation (3) to (6) gives the output of multiplication of X^2

$$k3 = q3 \tag{3}$$

$$k2 = q3 \oplus q2 \tag{4}$$

$$k1 = q2 \oplus q1 \tag{5}$$

IJRSET Volume 2, Issue 4 $k0 = q3 \oplus q1 \oplus q0$ (6)

Similarly, let as input of multiplication X as q3, q2, q1 and q0, corresponding output of multiplication of X as K3, K2, K1 and K0 respectively. These should be derived with the help of fig. 5. Equation representation (7) to (10) gives the output of multiplication of X.

$$K3 = q0 \oplus q1 \oplus q2 \oplus q3 \quad (7)$$
$$K2 = q1 \oplus q3 \quad (8)$$

$$K2 = q1 \oplus q3 \tag{8}$$
$$K1 = q2 \tag{9}$$

$$K0 = q2 \oplus q3 \tag{10}$$

(10)

In our proposed work, we combine these two multiplications and get the minimized circuit which is obtained by following simplifications. From equation (7) and equation (3) to (6), we can also write,

$$K3 = q0 \oplus q1 \oplus q3 \oplus q2 \oplus q1 \oplus q2 \oplus q3 \oplus q3$$

We know that, A XOR A = 0. Hence, we get,

$$K3 = q0 \oplus q3 \tag{11}$$

From equation (8) and equation (3) to (6), we can also write,

$$K2 = q1 \oplus q2 \oplus q3 \quad (12)$$

► K3 q_3 xor xor xor K2 \mathbf{q}_2 K1 q_1 ► K0 q_0

From equation (9) and equation (3) to (6), we can also write.

$$K1 = q2 \oplus q3 \tag{13}$$

From equation (10) and equation (3) to (6), we can also write,

$$K0 = q2 \oplus q3 \oplus q3$$
 Hence, we get,
 $K0 = q2$ (14)

From equation (12) and equation (13), a common factor $q2 \oplus q3$ can be repeated. Hence, we can reuse the same resource for both of the place.

Let $h = q2 \oplus q3$ Therefore finally, we get,

$$K3 = q0 \oplus q3 \tag{15}$$

$$K2 = q1 \oplus h \tag{16}$$

$$K1 = h \tag{17}$$

$$K0 = q2 \tag{18}$$

Equation (15) to equation (18) represents the proposed equations for minimized Composite S-Box. The architecture of combined both multiplication of X^2 and multiplication of X $\}$ is illustrated in fig. 6. The proposed combined multiplication uses only three XOR gates to produce sufficient data suited for inverse multiplication operation.

Figure: 6 Block diagram of Proposed Composite S-Box

It reduces the five XOR gates when compared to the traditional multiplication structures. Further, this structure is incorporated into Multiplicative Inverse Block of Composite S-Box to reduce the hardware complexity and power consumption of AES encryption and decryption process. The block diagram of proposed Composite S-Box is illustrated in fig. 7.

5. ENHANCED INVERSE MIXCOLUMN TRANSFORMATION

In addition to minimized Composite S-Box, enhanced Inv MixColumn transformation is used in this paper. Enhanced Inv MixColumn multiplication is developed in [9] by using redundant multiplication elements. For an Inv MixColumn transformation, multiplication of state byte input with 09, 0d, 0b and 0e are performed concurrently. In enhanced Inv MixColumn multiplication, only multiplication of 09, 04 and 02 are be determined manually. For further evaluation these resource are utilized effectively, since all the multiplications uses maximum of those resources only. The of enhanced architecture Inv MixColumn multiplication for AES decryption is illustrated in fig. 8. While reusing the existing resources for other operations, hardware complexity can be reduced successfully. Hence, it is clear that enhanced Inv MixColumn provides the better solution for AES decryption than traditional types of Inv MixColumn multiplication. Numbers 1, 2, 3 and 4 of fig. 8 represent the reusing the resources of $s_{o,c}$, $s_{1,c}$, $s_{2,c}$ and $s_{3,c}$ respectively.

Figure: 7 Enhanced Inv MixColumn Multiplication

IJRSET Volume 2, Issue 4 6. RESULTS AND DISCUSSION

Verilog Hardware Description Language (Verilog HDL) is used in this paper for the design of Minimized Composite S-Box and Enhanced Inv MixColumn. The simulation results of minimized Composite S-Box and enhanced Inv MixColumn of AES encryption and AES decryption are validated by ModelSim 6.3C and Synthesis results are evaluated by using Xilinx (Family-Virtex Devices-10.1i 4. XC4VLX15/XCVLX25, Package-FF668 and Speed:-12) design tool. The simulation result of AES encryption is demonstrated in fig. 9. Encryption of 128-bits data is obtained in fig. 8 though four transformations (Minimized Composite S-Box, Shift Rows, MixColumn and Add Round Key). For instance, 128-bit data input

Pages: 32-42

is considered as 85fc3432abcd53210be0ac125ccdb110 in hexadecimal format. Encrypted data obtained in result simulation is 9ba71628a7ee25e0416a7354a15b1321 in hexadecimal format, which is illustrated in fig. 8. Similarly, the simulation result of AES decryption is illustrated in fig. 10. In decryption process, encrypted data. (i.e.) 9ba71628a7ee25e0416a7354a15b1321 is given as input. It reconstructs the original input (i.e.) 85fc3432abcd53210be0ac125ccdb110 through proposed Minimized Composite AES S-Box and Enhanced Inv MixColumn. The performances of Traditional Composite S-Box and Proposed Minimized Composite S-Box is analyzed and table compared in 1.

Figure: 8 Simulation result of Encryption by using Minimized Composite S-Box and Enhanced Inv Mix Column

From table 1, it is clear that proposed Minimized Composite S-Box offers 8.53% reduction Slices, 9.79% reduction of LUT, 37.66% reduction of delay and 6.15% reduction of power consumption than traditional Composite S-Box. The performance of table 1 is graphically illustrated in fig. 11. Further proposed Minimized Composite S-Box and enhanced Inv MixColumn transformations are incorporated into encryption and decryption of AES algorithm. The

comparison of traditional AES encryption and Proposed Minimized Composite S-Box based AES encryption is demonstrated in table 2. Their Performances are graphically illustrated in fig. 12. From table 2, it is clear that proposed Minimized Composited S-Box based AES Encryption offers 6.86% reduction of Slices, 6.27% reduction of LUTs, 12.68% reduction of delay and 7.35% reduction of power consumption than traditional AES Encryption. The comparison of traditional AES decryption and Proposed Minimized

Pages: 32-42

Composite S-Box & Enhanced Inv MixColumn based AES decryption is demonstrated in table 3. Their performances are graphically illustrated in fig. 13. From Table 3, it is clear that Proposed Minimized Composite S-Box & Enhanced Inv MixColumn based AES Decryption offers 17.15% reduction of Slices, 17.55% reduction of LUT, 3.97% reduction of delay consumption and 1.25% reduction of power consumption than traditional AES Decryption.

📶 wave - default							- • ×
File Edit View Add Format Tools	Window					200	
068618882210	N 🗄 👌 🕹 🕯	₩23 1 + + + 13	100 ps + 1 1 1 1 7 0	ซ∣ <u>มี</u> มีเชีย	🖌 🖬 ad i 🔜 😽 🦋	ଭ୍ର୍ଭ୍ଭ	¥
Message	s						
🔶 tiro aes des withoutstime/sk	SHO	1					
/pro_aes_dec_withoutxtme/sel	Sti						
/pro_aes_dec_withoutxtime/data_in	10011011101001	1116 1001 1011 10 100 11 1000 10 11000 10 10	00010100111111011100010010101111000	0000 100000 10 1 10 10 100 1 1 100 1 10 10	10 100 10 10000 10 10 1 10 1 1000 100	1100100001	
	85fc3432abcd532	210			0	35fc3432abcd53210be0ac125cc	db110
/pro_aes_dec_withoutxtme/key_add_	01001011101100	011 010010111011001111101111100000	00001101110000000000000000001101	20110 1000000 10 10 10 10 11 11 11 11 100	11100000101110011100000011	1110000111	
	01001011101100	011 010010111011001111101111100000	00001101110000000000000000001101	0011010000001010101010111111100	11100000101110011100000011	1110000111	
pro_aes_dec_withoutxtime/reg_out2	10000011110011	1110 10000011111001111000110000101	11 10000 11110 1000 1011 10 1000 10 10 1	1000 000 111110 1100 101111110111	01111010111101010011100010	1010001100	
/pro_aes_dec_withoutxtime/reg_out3	10011000110001	110 10011000110001101100111100011	1101100111101010100010000101110	1101101110010111011010101000000	000101101010000001011011100	1100111111	
pro_aes_dec_withoutxtme/reg_out4	111000010011010	100 11100001001101000011010100011	1000110000101110010101010100111111	10101010100001100111010000010	110000001011111111100011001	0100000011	
pro_aes_dec_withoutxtme/reg_outs	110111000001110	1010 1101110000011101000111001000100	00111110001000010100111111010001	00000000100001010110111001000		0101001111	
jpro_aes_dec_withoutxime/reg_outs	11111010110000		000001011100000001111000101000	100001010000000000000000000000000000000		0101111010	
hro set der withrutytmetres outs	011111010001100		0111110000011101000000011010	11000001100001010110111100110	100010011101110011100111001001	01101101101010010010010010011	011011000
inn as der withoutstmelreg out	00101100000010	010	0111101000111110011	0010110000001010001110001	011111101111010000000000000000000000000	0000101010000011110110100	0100001110
+ / into aes dec withoutxtime/reg out10	11100100111110	011		001011000001010001110001	11100100111110110101010101	1100011110110011110000101	1101100110
- /oro aes dec withoutxtme/initial key	11010000001010	100 110 10000000 10 100 11 1 1 100 110 10	000 1 100 100 11 1 10 1 1 1000 100 10 10	201111000010011111100001100110	01000101101100110001100001	0010100110	
p / /pro aes dec withoutxtime/round1 k	ey 101011000111011	1110 10101100011101110110011011100	01100011001111110101101101110000100	00 100 10 1000 1 10 1000 100 10 100 10 1	0000 10 10 10 11 10 10 11 100000000	0001101110	
	y 11101010110100	010 1110101011010010011100100100	00110110101100011011011101010100	0 1000 1 1000 100 10 10 1 1 1 1 1 10 10	00000111111110001101001010	0100101111	
	ey 010011100101010	100.01001110010101001111011100001	1100101111101011111111001001111100	01110000100101001001001001111101	100 100 100 11 10 10 100 100 110 1 10 11	0001001111	i i i i i i i i i i i i i i i i i i i
	ey 011011011000100	000 01101101100010001010001101101	01000010001000010110011111111	101110110111111100110000110010	000011100101000000000000000000	1111111101	i i i i i i i i i i i i i i i i i i i
pro_aes_dec_withoutxtime/round5_ix	ey 110101001101000	001 11010100110100011100011011111	0000111110010000011100110110000	1 1 1 1 100 10 10 1 1 1 100 10 10 11 1000 10 1	111000001000111111001000101	0110111100	
/pro_aes_dec_withoutxtime/round6_k	ey 111011110100010	100 11101111010001001010101010101000	00110101000010100100100101101101111	111101101100111000100100100101001	11011110110110000101110101	010000000	
/pro_aes_dec_withoutxtime/round7_k	ey 00111101100000	000 <mark>00111101100000000100011101111</mark>	101010001110001011011111111000111	11000011111000100011011111110010	co 1000 1 10 1 10 10 1 1 1 10 10 1000 10	0000111011	
	ey 11110010110000	010 111100101100001010010101111100	0 100 1 1 1 10 10 100 10 1 10 10 1 1 100 10 1	01101010010011010101000000011	11010011100110101101100111110	1001111111	
/pro_aes_dec_withoutxtime/round9_k	ey 10100000111110	010 10100000111110101111111000010	11110001000010101000010110010110	001001000111010001100111001001	11001001010101001101100011101	1000000101	
/pro_aes_dec_withoutxtime/round10_	00101011011111	110 001010110111111000010101000010	1000101000101011101101000	10101010111111011100010101100	01000000010011100111101001	1100111100	
/pro_aes_dec_withoutxtme/round1_o	ut 10000011110011	111 10000011110011110001100000101	11100001111010001011101000101011	10001000111110110010101111110111	011110101111101010011100010	1010001100	
/pro_aes_dec_withoutxtme/round2_or	ut 10011000110001	10 10011000110001101100111100011	11011001111010101000100000101110	11011011100101110110101010000000	0001011010100000001011011100	1100111111	
pro_aes_dec_withoutxtime/rounds_oi	at 111000010011010		00011000010111001010101000111111	101010110100001100111010000010	1100000010111111110001100	0100000011	
a hrea see dec without-time keyeds a	a 010111000001110		0001111100010000101001111100000	000000000000000000000000000000000000000		0101001111	
into aes dec withoutstime/rounds of	1111101001000		10000101110000000011110001010000	1010110100100100100001001000	1001110010010111001010101	010010010011	
no acs dec withoutvine round of	ut 011111010001111	111	1111010001111100111100000110100	01111011110111101100100010011101	10010101010101011011011011010	010010010011	1111000110
Joro aes dec withoutxtime.hound8 o	ut 00 10 1 1000000 10	010	01010010	000010100011100010011111101111	0 100 100 100000000000 10 10 10 10 00	0111101101001000111010	0101100101.
/ 3 9	7.41	damana					
	2,4115	2 .2 ns 1.4 ns	1.6 ns	1.8 ns	2 ns	2.2 ns	2 ns
Cursor	2.395 ns						2.395 15
1	<u> </u>	<u>1</u> N					
110E as to 2464 as	2 400 mr. Dallas 1						

Figure: 9 Simulation result of Decryption by using Minimized Composite S-Box and Enhanced Inv MixColumn

Types	Slices	LUT	Delay(ns)	Power(mW)
Traditional	17	01	8 260	601
Composite S-Box	47	71	0.200	001
Proposed				
Minimized	43	83	5.149	564
Composite S-Box				

Table: 1 Comparison of Traditional Composite S-Box and Proposed Minimized Composite S-Box

Types	Slices	LUT	Delay(ps)	Frequency (MHz)	Power(mW)
Traditional AES Encryption	8576	16,041	8170	122.393	6511
Proposed Minimized Composite S-Box based AES Encryption	7987	15,035	7134	140.176	6032

Table: 2 Comparison of Traditional Encryption and Proposed Minimized Composite S-Box based AES Encryption

Figure: 10 Performances of Traditional Composite S-Box and Proposed Minimized Composite S-Box

Figure: 11 Performances of Traditional AES Encryption and Proposed Minimized Composite S-Box based AES Encryption

Pages: 32-42

Types	Slices	LUT	Delay(ps)	Frequency(MHz)	Power(mW)
Traditional AES	10 307	10.035	7042	142 002	6554
Decryption	10,307	19,055	7042	142.002	0554
Proposed Minimized					
Composite S-Box &					
Enhanced Inv	8539	15,693	6762	147.886	6472
MixColumn based					
AES Decryption					

Table: 3 Comparison of Traditional Decryption and Proposed Minimized Composite S-Box & Enhanced Inv MixColumn based AES Decryption

Figure: 12 Performance of Traditional AES Decryption and Proposed Minimized Composite S-Box & Enhanced Inv MixColumn based AES Decryption

CONCLUSION

In this paper, design of Minimized Composite S-Box and Enhanced Inv MixColumn transformation was done by using Verilog HDL. Proposed designs are implemented in Very Large Integration System Scale (VLSI) design environment. Low power consumption, high speed and less area utilization are the main key factors in VLSI System design environment. Hence, proposed model aims to reduce the hardware complexity, Power consumption and improve the speed of the System. Redundant operations cause poor performances in terms of hardware complexity in any combinational path. Hence, in this paper, redundant logic functions of Composite S-Box **MixColumn** and Inv

transformations are identified and eliminated. Common resources of Composite S-Box and Inv MixColumn Transformations are designed once and it should be shared for entire combinational path. Proposed Minimized Composite S-Box offers 8.53% reduction Slices, 9.79% reduction of LUT, 37.66% reduction of delay and 6.15% reduction of power consumption than traditional Composite S-Box. Further Proposed Composite S-Box Enhanced Inv **MixColumn** and transformations are integrated into AES encryption and AES decryption process respectively. Proposed Minimized Composited S-Box based AES Encryption offers 6.86% reduction of Slices, 6.27% reduction of LUTs, 12.68% reduction of delay and 7.35% reduction of

power consumption than traditional AES Encryption. Proposed Similarly, Minimized Composite S-Box & Enhanced Inv MixColumn based AES Decryption offers 17.15% reduction of 17.55% reduction of LUT, 3.97% Slices, reduction of delay consumption and 1.25% reduction of power consumption than traditional **AES** Decryption.

REFERENCES

- K. Munusamy, C. Senthilpari, and D. C. Kho, "A low power hardware implementation of S-Box for Advanced Encryption Standard" In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014 11th International Conference on (pp. 1-6). IEEE.
- [2] M. Anitha Christy, S. Sridevi Sathya Priya, N. M. Siva Mangai, and P. Karthigaikumar, "Design and implementation of low power Advanced Encryption Standard S-Box using pass transistor XOR-AND logic" In Electronics and Communication Systems (ICECS), 2014 International Conference on (pp. 1-7). IEEE.
- [3] M. Senthil Kumar and S. Rajalakshmi, "Incorporation of Wave Pipelined Techniques into Composite S-Box and AES Architectures" Research Journal of Applied Sciences, Engineering and Technology (RJASET), Vol. 8, No. 15, pp: 1717-1723, 2014.
- [4] M. Senthil Kumar, and S. Rajalakshmi, "Incorporation of Reduced 09, 0B, 0D and 0E Structures into Inverse MixColumns for AES 128 Algorithm" Journal of Theoretical and

Pages: 32-42

Applied Information Technology (JTAIT), Vol. 70, No. 1, pp: 112-120, 2014.

- [5] N. Ahmad, and S. R. Hasan, "Low-power compact composite field AES S-Box/Inv S-Box design in 65nm CMOS using Novel XOR Gate". Integration, the VLSI journal, Vol. 46, Issue. 4, pp: 333-344, 2013.
- [6] N. Shanthini, P. Rajasekar and H. Mangalam, "Design of low power S-Box in Architecture Level using GF" International Journal of Engineering Research and General Science (IJERGS), Vol. 2, Issue. 3, pp: 268-276, 2014.
- [7] R. Thillaikkarasi and K. Vaishnavi, "Optimum Composite Field S-Boxes Aimed at AES" International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), Vol. 3, Issue. 1, pp: 1-5, 2014.
- [8] S. Anitha, and M. Suganya, "Area optimized in storage area network using Novel Mix column Transformation in Masked AES" International Journal of Engineering Trends and Technology (IJETT), Vol. 20, No. 6, pp: 275-282, 2015.
- [9] J. Balamurugan and E. Logashanmugam, "Enhanced Inverse MixColumn Design for AES Decryption" accepted for publication in Middle East Journal of Scientific Research (MEJSR), June, 2015.
- [10] Zhao Wang, Xiao Zhang, Sitao Wang, Hao and Zhiming Zhisong Zheng, "Application of the Composite Field in the Design of an Improved AES S-Box Based on Inversion" The Third International Communications, Conference on Computation, Networks and Technologies, pp: 23-29, 2014.