
IJRSET JUNE 2017 Volume 4, Issue 6 Pages: 6-11

BEST KEYWORD SEARCH ON SPATIAL DATABASE WITH
FRQUENT ITEM SEARCH

1 S. VISHALAKSHI, 2 Dr. R. SUKUMAR

1 PG SCHOLAR 2 PROFESSOR
1, 2 KIT- KALAIGNAR KARNANIDHI INSTITUTE OF TECHNOLOGY

__
ABSTRACT: Databases nowadays contain large volumes of data, and they are accessed by
numerous users on a daily basis. The large volume of data poses challenges to both users
accessing the databases and the companies or organizations managing them. Enterprises on the
other hand, need to make their content visible and accessible to the users and identify which
objects in their database (e.g. products) have a significant impact on the user basis and use this
information for promoting their products. The original target of increasing the visibility of the
available products is thus hindered by the abundance of products contained in the database. It is
therefore necessary to develop data exploration techniques that will enable users to explore large
databases and provide them with a wide, yet coherent overview of objects that fit their
preferences. In this paper, we propose exploratory algorithms that return to the user a small
number of results, which at the same time provide a wide overview of the available content. In
addition, we present algorithms that identify items that are appealing to users and can be
exploited for offering users an insight of the available items and motivating them to explore the
database. We also propose analysis techniques using FP growth algorithm for identifying
frequent search objects that are attractive to the users. This algorithm is a more efficient
algorithm that achieves results of comparable quality, but with significantly lower processing
cost.
__

1. INTRODUCTION

Most companies today invest
significant resources on making their content
visible on the Web and enabling users to
browse the offered products and services.
Often, companies provide a plethora of
different alternatives, which overwhelm the
user and make it extremely difficult for them
to find the products they are interested
in.When users are searching in a database,
they are usually unaware of the exact database
content. Quite commonly, they do not have a
concrete idea of the objects’ properties they
are searching for but only certain preferences
about them. Consequently,

they need to explore the database contents to
find the objects that best fit their preferences.
For instance, if someone wishes to buy a
laptop, one may have a general idea about the
desired characteristics, but an exact
description of the laptop is difficult to be
strictly determined. Traditional database
queries are hard constraint queries, which
return either exact matches or nothing. In
addition, hard constraint queries are in general
quite complex, and in order to produce useful
results, they require the user to be aware of the
database content. They also often require the
knowledge of a specific query language and

IJRSET JUNE 2017 Volume 4, Issue 6 Pages: 6-11
the structure of the queried database.
Moreover, hard constraints are quite likely to
produce very small or extremely large result
sets that provide little insight of the available
data. As a result, users are led to pose
repeatedly new queries until they retrieve a
satisfying result set. Therefore, they are
inappropriate for exploratory search as they
pose significant difficulties to users searching
the database.

Users experience frustration when they
are not able to easily find the information they
need. In an attempt to make database content
easily accessible, several approaches have
been proposed, which allow users to express
their needs by posing preference queries using
either sets of keywords or by indicating their
interest on the objects’ attributes they are
searching for. The query result is typically a
list of objects, usually ranked according to a
function that measures the relevance or the
performance of each object with respect to the
query.

A key aspect that preference queries
fail to capture in its entirety is the fact that
users performing exploratory search are
generally unfamiliar with the domain of the
data they are searching, and they are possibly
unclear about their wishes. A flat list of results
provides little insight to the user about the
available information. In addition, the
relaxation of constraints induced by
preference queries introduces ambiguity to the
search, as each keyword query could be
associated with a large number of database
queries. As a result queries can produce a
large number of redundant results, which the
user has to filter out.

In this paper, we propose exploratory
algorithms that return to the user a small
number of results, which at the same time
provide a wide overview of the available
content. In addition, we present algorithms
that identify items that are appealing to users
and can be exploited for offering users an
insight of the available items and motivating
them to explore the database. We also propose
analysis techniques using FP growth algorithm

for identifying frequent search objects that are
attractive to the users.

2. RELATED WORKS

The existing works focus on retrieving
individual objects by specifying a query
consisting of a query location and a set of
query keywords (or known as document in
some context). Each retrieved object is
associated with keywords relevant to the
query keywords and is close to the query
location. The similarity between documents
are applied to measure the relevance between
two sets of keywords.
 Efficient Processing of Direction Joins
Using R-trees [1] presents an efficient method
for processing direction joins using R-trees.
The quad-tuples model is defined to represent
direction relations between the minimum
bounding rectangles of spatial objects. An
algorithm of processing the filter step of joins
using R-trees is given and the refinement step
processing is further decomposed into three
different operations.Answering Why-Not
Spatial Keyword Top-k Queries via Keyword
Adaption [2] A spatial keyword top-k query
takes a user location and a set of keywords as
arguments and retrieves the k objects that are
ranked the highest according to a scoring
function that considers both spatial distance
and textual similarity. Efficient Collective
Spatial Keyword Query Processing on Road
Networks [3] We study the problem of
collective spatial keyword queries on road
networks (i.e., CSKQ on road networks),
which retrieves a set of POIs (Point of
Interests) that collectively cover the queried
keywords and have the lowest cost, measured
by their shortest path distances to a specified
query position, and the inter-POI distances
between POIs in the set. Efficient Top-k
Spatial Locality Search for Co-located Spatial
Web Objects [4] Locality Search, a query that
returns top-k sets of spatial web objects and
integrates spatial distance and textual
relevance in one ranking function. Keyword
Search on Spatial Databases [5] we introduce
an indexing structure called IR2-Tree

IJRSET JUNE 2017 Volume 4, Issue 6 Pages: 6-11
(Information Retrieval R-Tree) which
combines an R-Tree with superimposed text
signatures. We present algorithms that
construct and maintain an IR2-Tree, and use it
to answer top-k spatial keyword queries.
Challenges in the Design and Implementation
of Wireless Sensor Networks: A Holistic
Approach- Development and Planning Tools,
Middleware, Power Efficiency,
Interoperability[6] WSN challenges by
developing an integrated platform for smart
environments with built-in user friendliness,
practicality and efficiency. This platform will
enable the user to evaluate his design by
identifying critical features and application
requirements. Location Aware Keyword
Query Suggestion Based on Document
Proximity[7] weighted keyword-document
graph, which captures both the semantic
relevance between keyword queries and the

spatial distance between the resulting
documents and the user location. The graph is
browsed in a random-walk-with-restart
fashion, to select the keyword queries with the
highest scores as suggestions.

3. PROPOSED WORK

It is motivated by the observation of
increasing availability and importance of
keyword rating in decision making. We
presented algorithms for the identification of
objects that are constantly attractive for a large
number of users over a specified period of
time. FP algorithm is used for identify the
frequently searched items in a spatial database
through this we improve the best keyword
search for the web users.Searching local best
solution for each object in a certain query
keyword.

 The number of candidate keyword
covers generated is significantly reduced.
Mining user’s availability based on their
interest.

Compared to the baseline algorithm,
the number of candidate keyword covers
generated in this algorithm is significantly
reduced.

Figure 1: Architecture Diagram

3.1 Spatial Database module
The spatial data model thus consists of

a set of abstract concepts that can be used to
describe any object that has a spatial extent in
one or more dimensions. Spatial data, in turn,
consist of spatial objects comprised of points,
lines, regions, rectangles, surfaces, volumes,
and more abstract dimensions such as time
Examples of such objects include roads,
rivers, cities, forests, mountains, or other
geographical landmarks and areas. In a regular
relational database, objects are stored as a
collection of tuples , where each tuple consists
of several fields belonging to different data
types. A spatial object can be stored in such a
database by naively creating a field for each of
the spatial dimensions of the object, or any of
the other spatial properties it is desirable to
store.

3.2 Getting User Interest and Activity
 A point of interest, or POI for short, is
a specific point location that someone may
find useful or interesting. POIs can be used in
navigation, characterization of a place,
sociological studies, city dynamics analysis,
geo-reference of texts, etc. Such a simple
information structure can be used and

USER
(SEAR

INPUT
QUERY

BEST

KEYWORD
COVER

CALCULA
TE POINT

FP-

GROWTH

RET
RIVE
QUE

IJRSET JUNE 2017 Volume 4, Issue 6 Pages: 6-11

enriched such that context-aware systems
behave more intelligently. In spite of their
importance, the production of POIs is
scattered across a myriad of different
websites, systems and devices, thus making it
extremely difficult to obtain an exhaustive
database of such a wealthy information.

3.3 Frequent Search Item Mining

Frequent-pattern growth or simply FP-
growth, which mines the complete set of
frequent item sets without candidate
generation. This method adopts a divide-and-
conquer strategy as follows: first it
compresses the database representing frequent
items into frequent-pattern tree, or FP-tree,
which retains the item set association
information. It then divides the compressed
database into a set of conditional database ,
each associated with one frequent item or
pattern fragment, and mines each such
database separately.

3.4 Search Result

User enters search criteria and
executes search. The system shall display
results which match the search criteria
entered. The view shall default to that selected
by the user (i.e. Suspect/Case). If the User
chooses to change the view on the results
page, The system shall switch between views
depending on the view (Suspect/Case)
selected.The search space is exponential in the
number of items occurring in the database and
the targeted databases tend to be massive,
containing millions of transactions. Both these
characteristics make it a worthwhile effort to
seek the most efficient techniques to solve this
task.

FP growth Algorithm

The FP-growth method transforms the
problem of finding long frequent patterns to
searching for shorter ones recursively and then
concatenating the suffix. It uses the least
frequent items as a suffix, offering good

selectivity. The method substantially reduces
the search costs.

In general when considering the
branch to be added for a transaction, the count
of each node along a common prefix is
incremented by 1 and nodes for the items
following the prefix are created and linked
accordingly. 12 To facilitate tree traversal, an
item header table is built so that each item
points to its occurrences in the tree via a chain
of node-links. In this way the problem of
mining frequent pattern in database is
transformed to that of mining the FP-tree. The
FP-tree is mined as follows: Start from each
frequent length-1 pattern, as an initial suffix
pattern, construct its conditional pattern base,
a sub-database, which consists of the set of
prefix paths in the FP-tree co-occurring with
the suffix pattern, then construct its
conditional FP-tree and perform mining
recursively on such a tree. The pattern growth
is achieved by the concatenation of the suffix
pattern with the frequent patterns generated
from a conditional FP-tree.
The FP-growth algorithm: mine frequent item
sets using an FP-tree by pattern fragment
growth.
Input:
§ D, a transaction database
§ min_sup, the minimum support count
threshold
Output:
the complete set of frequent patterns.
Method:
(1) the FP-tree is constructed
(2) The FP-tree is mined by calling FP-
growth(FP_tree, null):
procedure FP_growth(Tree, α) if Tree contains
a single path P then for each combination
(denoted as β) ofthe nodes in the path P
generate pattern βUα with support_count =
minimum support count of nodes in β; else for
each ai in the header of Tree{ generate
pattern β=aiUα with support_count = ai
.support_count construct β’s conditional

IJRSET JUNE 2017 Volume 4, Issue 6 Pages: 6-11

pattern base and then β’s conditional FP_tree
Treeβ ;
if Treeβ != 0 then
call FP_growth(Treeβ , β); }

4. EXPERIMENTAL RESULT AND
DISCUSSION

In this round of evaluation, we first
conduct an experiment varying the number of
objects to evaluate the scalability of the
indices for each type of query. In addition, to
evaluate the effect of the text size of each
object, we conduct an experiment varying the
average number of words per object for the
best search.
keywords is large or a space limitation has to
be strictly satisfied. Grid based indices are not
attractive for the BKS compared with the
other indices. We do not find dramatic
difference in relative performance among the
indexing techniques.

Fig 2 : Experimental Chart

The query processing of the indices
scales linearly with the number of objects and
text length per object. Text-first indices are
more sensitive to text length than the other
types of indices. - The FP-tree page size for all
FP-tree based indices is experimentally shown
to be a factor that makes a great difference on
query performance.

CONCLUSION

The major problem with frequent set
mining methods is the explosion of the

number of results. It is difficult to find the
most interesting frequent item sets in the set
mining methods.In this paper we propose
exploratory algorithms that return to the user a
small number of results, which at the same
time provide a wide overview of the available
content. In addition, we present algorithms
that identify items that are appealing to users
and can be exploited for offering users an
insight of the available items and motivating
them to explore the database. We also propose
analysis techniques using FP growth algorithm
for identifying frequent search objects that are
attractive to the users.

REFERENCES
[1]. Rakesh Agrawal and Ramakrishnan
Srikant. “Fast algorithms for mining
association rules in large databases”. In:
VLDB. 1994, pp. 487–499.
[2]. T. Brinkhoff, H. Kriegel, and B. Seeger.
“Efficient processing of spatial joins using R-
trees”. In: SIGMOD (1993), pp. 237–246.
[3]. Xin Cao, Gao Cong, and Christian S.
Jensen. “Retrieving top-k prestige-based
relevant spatial web objects”. In: Proc. VLDB
Endow. 3.1-2 (2010), pp. 373–384.
[4]. Xin Cao et al. “Collective spatial keyword
querying”.In: ACM SIGMOD. 2011.
[5]. G. Cong, C. Jensen, and D. Wu. “Efficient
retrievalof the top-k most relevant spatial web
objects”. In: Proc. VLDB Endow. 2.1 (2009),
pp. 337–348.
[6]. Ian De Felipe, Vagelis Hristidis, and
Naphtali Rishe. “Keyword Search on Spatial
Databases”. In: ICDE. 2008, pp. 656–665.
[7]. R. Fagin, A. Lotem, and M. Naor.
“Optimal Aggregation Algorithms for
Middleware”. In: Journal of Computer and
System Sciences 66 (2003), pp. 614–656.
[8]. Ramaswamy Hariharan et al. “Processing
Spatial-Keyword (SK) Queries in Geographic
Information Retrieval (GIR) Systems”. In:
Proceedings of the 19th International
Conference on Scientific and Statistical
Database Management. 2007, pp. 16–23.3

0

20

40

60

80

100

200 400 600 800 1000

Se
ar

ch
 P

ro
ce

ss

No.of.Keywords

BaseLine

R-tree

FP-Growth

IJRSET JUNE 2017 Volume 4, Issue 6 Pages: 6-11

[9]. G. R. Hjaltason and H. Samet. “Distance
browsing in spatial databases”. In: TODS 2
(1999), pp. 256–318.
[10]. Z. Li et al. “IR-tree: An efficient index
for geographic document search”. In: TKDE
99.4 (2010), pp. 585–599.
[11]. N. Mamoulis and D. Papadias.
“Multiway spatial joins”. In: TODS 26.4
(2001), pp. 424–475.
[12]. D. Papadias, N. Mamoulis, and B. Delis.
“Algorithms for querying by spatial
structure”. In: VLDB (1998), p. 546.
[13]. D. Papadias, N. Mamoulis, and Y.
Theodoridis. “Processing and optimization of
multiway spatial joins using R-trees”. In:
PODS (1999), pp. 44
[14]. J. M. Ponte and W. B. Croft. “A
language modeling approach to information
retrieval”. In: SIGIR (1998), pp. 275–281.
[15]. Jo˜ao B. Rocha-Junior et al. “Efficient
processing of top-k spatial keyword queries”.
In: Proceedings of the 12th international
conference on Advances in spatial and
temporal databases. 2011, pp. 205–222.
[16]. S. B. Roy and K. Chakrabarti.
“Location-Aware Type Ahead Search on
Spatial Databases: Semantics and Efficiency”.
In: SIGMOD (2011).

