
IJRSET Volume 2, Issue 4 Pages: 18-24

Grid Scheduling and Computing –A Novel Approach for
Distributed computing

1 S.Vidya
1 Head & Associate Professor,

1 Departmont of Computer Applications,
1 Cauvery College for Women,

1 Trichy.

Abstract:-
Grid computing is a type of

circulated computing that includes
organizing and sharing computing,
application, information stockpiling or
system assets crosswise over element and
topographically scattered associations. The
objective of framework errands planning is
to accomplish high framework throughput
and to match the application need with the
accessible computing assets. This is
coordinating of assets in a non-
deterministically shared heterogeneous
environment. The multifaceted nature of
booking issue increments with the measure
of the lattice and turns out to be exceedingly
hard to explain successfully. To get great
systems to take care of this issue another
range of examination is executed. This
region is in light of created heuristic systems
that give an ideal or close ideal answer for
substantial networks. In this paper we
present an errands planning algorithm for
matrix computing. The algorithm is in light
of recreated tempering system. The paper
demonstrates to hunt down the best errands
booking for lattice computing.

Keywords: - Grid computing, Simulated
Annealing, Heuristics

1 INTRODUCTION
Grid computing came into being and

is currently an active research area. One
motivation of Grid computing is to
aggregate the power of widely distributed
resources, and provide non-trivial services to
users. To achieve this goal, an efficient Grid
scheduling system is an essential part of the
Grid. Rather than covering the whole Grid
scheduling area, this survey provides a
review of the subject mainly from the
perspective of scheduling algorithms.
In this review, the challenges for Grid
scheduling are identified. First, the
architecture of components involved in
scheduling is briefly introduced to provide
an intuitive image of the Grid scheduling
process.
Then various Grid scheduling algorithms are
discussed from different points of view,
such as static vs. dynamic policies, objective
functions, applications models, adaptation,
QoS constraints, strategies dealing with
dynamic behavior of resources, and so on.
Based on a comprehensive understanding of
the challenges and the state of the art of
current research, some general issues worthy
of further exploration are proposed. Task
scheduling is an integrated part of parallel
and distributed computing. Intensive
research has been done in this area and



IJRSET Volume 2, Issue 4 Pages: 18-24

many results have been widly accepted.
With the emergence of the computational
grid, new scheduling algorithms are in
demand for addressing new concerns arising
in the grid environment. In this environment
the scheduling problem is to schedule a
stream of applications from different users
to a set of computing resources to minimize
the completion time. The scheduling
involves matching of applications need with
resource availability. There are three main
phases of scheduling on a grid. Phase one is
resource discovery, which generates a list of
potential resources.
Phase two involves gathering information
about those resources and choosing the best
set to match the application requirements. In
the phase three the task is executed, which
includes file staging and cleanup.
In the second phase the choice of the best
pairs of tasks and resources is NP-complete
problem. A related scheduling algorithm for
the traditional scheduling problem is
Dynamic Level Scheduling (DLS)
algorithm.
DLS aims at selecting the best subtask-
machine pair for the next scheduling. To
select the best subtask-machine pair, it
provides a model to calculate the dynamic
level of the task machine pair.
The overall goal is to minimize the
computational time of the application. In the
grid environment the scheduling algorithm
no longer focuses on the subtasks of an
application within a computational host or a
virtual organization (clusters, network of
workstations, etc.).
The goal is to schedule all the incoming
applications to the available computational
power. In some simple heuristics for
dynamic matching and scheduling of a class
of independent tasks onto a heterogeneous
computing system have been presented.
There are two different goals for task
scheduling:
High performance computing and high
throughput computing. The former aim is

minimizing the execution time of each
application and latter aim is scheduling a set
of independent tasks to increase the
processing capacity of the systems over a
long period of time. Our approach is to
develop a high throughput computing
scheduling algorithm.

2. OVERVIEW OF THE GRID
SCHEDULING PROBLEM

A computational Grid is a hardware
and software infrastructure that provides
dependable, consistent, pervasive, and
inexpensive access to high-end
computational capabilities. It is a shared
environment implemented via the
deployment of a persistent, standards-based
service infrastructure that supports the
creation of, and resource sharing within,
distributed communities. Resources can be
computers, storage space, instruments,
software applications, and data, all
connected through the Internet and a
middleware software layer that provides
basic services for security, monitoring,
resource management, and so forth.
Resources owned by various administrative
organizations are shared under locally
defined policies that specify what is shared,
who is allowed to access what, and under
what conditions. The real and specific
problem that underlies the Grid concept is
coordinated resource sharing and problem
solving in dynamic, multi-institutional
virtual organizations.

Figure :1 Grid Scheduling
From the point of view of scheduling
systems, a higher level abstraction for the



IJRSET Volume 2, Issue 4 Pages: 18-24

Grid can be applied by ignoring some
infrastructure components such as
authentication, authorization, resource
discovery and access control. Thus, in this
paper, the following definition for the term
Grid adopted: “A type of parallel and
distributed system that enables the sharing,
selection, and aggregation of geographically
distributed autonomous and heterogeneous
resources dynamically at runtime depending
on their availability, capability,
performance, cost, and users' quality-of-
service requirements”. To facilitate the
discussion, the following frequently used
terms are defined:
• A task is an atomic unit to be scheduled by
the scheduler and assigned to a resource.
• The properties of a task are parameters
like CPU/memory requirement, deadline,
Priority, etc.
• A job (or metatask, or application) is a
set of atomic tasks that will be carried out on
a set of resources. Jobs can have a recursive
structure, meaning that jobs are composed of
sub-jobs and/or tasks, and sub-jobs can
themselves be decomposed further into
atomic tasks. In this paper, the term job,
application and Meta task are
interchangeable.
• A resource is something that is required to
carry out an operation, for example: a
processor for data processing, a data storage
device, or a network link for data
transporting.
• A site (or node) is an autonomous entity
composed of one or multiple resources.
• A task scheduling is the mapping of tasks
to a selected group of resources which may
be distributed in multiple administrative
domains.
2.1 The Grid Scheduling Process and
Components

A Grid is a system of high diversity,
which is rendered by various applications,
middleware components, and resources. But
from the point of view of functionality, we
can still find a logical architecture of the

task scheduling subsystem in Grid. For
example, Zhu proposes a common Grid
scheduling architecture. We can also
generalize a scheduling process in the Grid
into three stages: resource discovering and
filtering, resource selecting and scheduling
according to certain objectives, and job
submission. As a study of scheduling
algorithms is our primary concern here, we
focus on the second step.
Based on these observations, Fig. 1 depicts a
model of Grid scheduling systems in which
functional components are connected by two
types of data flow: resource or application
information flow and task or task scheduling
command flow.

2.2 . Grid Scheduling Algorithms: State of
the Art

It is well known that the complexity
of a general scheduling problem is NP-
Complete. As mentioned in Section 1, the
scheduling problem becomes more
challenging because of some unique
characteristics belonging to Grid computing.
In this section, we provide a survey of
scheduling algorithms in Grid computing,
which will form a basis for future discussion
of open issues in the next section.
2.3. A Taxonomy of Grid Scheduling
Algorithms

In, Casavant et al propose a
hierarchical taxonomy for scheduling
algorithms in general-purpose parallel and
distributed computing systems. Since Grid is
a special kind of such systems, scheduling
algorithms in Grid fall into a subset of this
taxonomy. From the top to the bottom, this
subset can be identified as what follows.
• Local vs. Global
At the highest level, a distinction is drawn
between local and global scheduling. The
local scheduling discipline determines how
the processes resident on a single CPU are
allocated and executed; a global scheduling
policy uses information about the system to
allocate processes to multiple processors to



IJRSET Volume 2, Issue 4 Pages: 18-24

optimize a system-wide performance
objective. Obviously, Grid scheduling falls
into the global scheduling branch.
• Static vs. Dynamic
The next level in the hierarchy (under the
global scheduling) is a choice between static
and dynamic scheduling. This choice
indicates the time at which the scheduling
decisions are made. In the case of static
scheduling, information regarding all
resources in the Grid as well as all the tasks
in an application is assumed to be available
by the time the application is scheduled. By
contrast, in the case of dynamic scheduling,
the basic idea is to perform task allocation
on the fly as the application executes. This is
useful when it is impossible to determine the
execution time, direction of branches and
number of iterations in a loop as well as in
the case where jobs arrive in a real-time
mode. These variances introduce forms of
non-determinism into the running program.
Both static and dynamic scheduling are
widely adopted in Grid computing.

3. SCHEDULING ALGORITHMS
The parameter sweep applications,

created using a combination of task and data
parallel models, contain a large number of
independent jobs operating different data
sets. A range of scenarios and parameters to
be explored are applied to the program input
values to generate different data sets. The
programming and execution model of such
applications resemble the SPMD (Single
Program Multiple Data) model. The
execution model essentially involves
processing N independent jobs (each with
the same task specification, but a different
dataset) on M distributed computers where
N is, typically, much larger than M. When
the user submits a parameter sweep
application containing N tasks along with
quality of service requirements, the broker
performs the following activities:
Resource Discovery:

Identifying resources and their properties
and then selecting resource capable of
executing user jobs.
2. Resource Trading: Negotiating and
establishing service access cost using a
suitable economic model.
3. Scheduling: Select resources that fit user
requirements using scheduling
heuristic/algorithm and map jobs to them.
4. Deploy jobs on resources [Dispatcher].
5. Monitor and Steer computations
6. Perform load profiling for future usage
7. When the job execution is finished, gather
results back to the user home machine
[Dispatcher].
8. Record all resource usage details for
payment processing purpose.
9. Perform rescheduling: Repeat steps 3-8
until all jobs are processed and the
experiment is within the deadline and budget
limit.
10. Perform cleanup and post-processing, if
required.

3.1. Adaptive Scheduling
An adaptive solution to the

scheduling problem is one in which the
algorithms and parameters used to make
scheduling decisions change dynamically
according to the previous, current and/or
future resource status. In Grid computing,
the demand for scheduling adaptation comes
from three points:
the heterogeneity of candidate resources, the
dynamism of resource performance, and the
diversity of applications, as Fig. 4 shows.
Correspondent with these three points,

Figure: 2 Adaptive Scheduling



IJRSET Volume 2, Issue 4 Pages: 18-24

3.2 Data Scheduling
In high energy physics,

bioinformatics, and other disciplines, there
are applications involving numerous,
parallel tasks that both access and generate
large data sets, sometimes in the petabyte
range. Data sets in this scale require
specialized storage and management
systems and data Grid projects are carried
out to harness geographically distributed
resources for such data-intensive problems
by providing remote data set storage, access
management, replication services, and data
transfer protocols.

Figure: 3 Data Scheduling

As mentioned in Section 1, one important
difference between Grid scheduling and its
Traditional counterpart is that, in the latter,
the data staging problem usually need not be
Considered by scheduling algorithms. This
is because the resources on which
applications will run are determined before
scheduling so that the data staging cost is a
constant. The only cost relating to data
transmission that should be considered is
from the data produced at the run time, e.g.,
the data dependency in DAGs. In the Grid
environment, by contrast, the location where
an application finally is processed is usually
selected in real time, so that the cost to
transfer the input data from the storage sites
to the processing sites might vary according
to which processing sites are selected as

well as which storage sites are used when
the data have multiple replicas. Further,
assigning a task to the machine that gives its
best execution time may result in poor
performance due to the cost of retrieving the
required input data from data repositories.
In, Park et al classify models of cost
measured in makespan into five categories,
namely 1) Local Data and Local Execution
(here, local means where a job is submitted),
2) Local Data and Remote Execution, 3)
Remote Data and Local Execution, 4)
Remote Data and Same Remote Execution
and 5) Remote Data and Different Remote
Execution. The algorithms we have
discussed in previous subsections can not be
directly used to solve these problems,
although they are helpful to find feasible
answers

CONCLUSION
In spite of the fact that the Lattice

has the attributes of heterogeneity and
dynamicity, these elements are not straight
dispersed in assets, but rather will be
somewhat disseminated progressively and
provincially as a rule, because of the
synthesis of the Matrix assets. Current
Lattice assets are generally dispersed in a
grouped manner. To defy new difficulties in
undertakings booking in a network situation,
we display in this study heuristic booking
algorithm. The proposed booking algorithm
is intended to accomplish high throughput
computing in a matrix domain. Thisis a NP-
issue and to be tackled needs an exponential
time. Accordingly the heuristic algorithm,
which discovers a decent arrangement in a
sensible time, is created. In this paper
heuristic algorithm in view of mimicked
tempering system is examined and it
essential systems for a framework planning
are figured. This algorithm ensures great
burden adjusting of the machines and it is
connected in element way.
Resources in the same bunch for the most
part fit in with the same association and are



IJRSET Volume 2, Issue 4 Pages: 18-24

moderately more homogeneous and less
dynamic in a given period. Inside a group,
correspondence expense is normally low and
the quantity of utilizations running in the
meantime is typically little.
These conveyance properties may convey
another plausibility for new algorithms to
manage the Lattice challenges.
For instance, by taking multiphase or
multilevel systems, a Lattice scheduler can
first locate a coarse planning in the
worldwide Network and after that a fine
timetable in a nearby group.
This kind of method has the accompanying
favorable circumstances, At the larger
amount, where fine asset data is harder to
acquire, the worldwide planning can utilize
coarse data, (for example, burden adjusting,
correspondence deferral of WAN
connections) to give decentralized burden
adjusting components. At the lower level, it
is simple for nearby planning to use more
particular data, (for example, data from a
neighborhood forecaster) to settle on
versatile choices.

REFRENCES
[1] A. Abraham, R. Buyya and B. Nath,
Nature's Heuristics for Scheduling Jobs on
Computational Grids, in Proc. of 8th IEEE
International Conference on Advanced
Computing and Communications (ADCOM
2000), pp. 45-52, Cochin, India, December
2000.
[2] A. K. Aggarwal and R. D. Kent, An
Adaptive Generalized Scheduler for Grid
Applications, in Proc. of the 19th Annual
International Symposium on High
Performance Computing Systems and
Applications (HPCS’05), pp.15-18, Guelph,
Ontario Canada, May 2005.
[3] M. Aggarwal, R.D. Kent and A. Ngom,
Genetic Algorithm Based Scheduler for
Computational Grids, in Proc. of the 19th
Annual International Symposium on High
Performance Computing Systems and

Applications (HPCS’05), pp.209-215,
Guelph, Ontario Canada, May 2005.
[4] A.H. Alhusaini, V.K. Prasanna, and C.S.
Raghavendra, A Unified Resource
Scheduling Framework for Heterogeneous
Computing Environments, in Proc. of the
8th Heterogeneous Computing Workshop,
pp.156-165, San Juan, Puerto Rico, April
1999.
[5] W. Allcock, J. Bresnahan, R.
Kettimuthu, M. Link, C. Dumitrescu, I.
Raicu, I. Foster, The Globus Striped
GridFTP Framework and Server, in Proc. of
the 2005 ACM/IEEE conference on
Supercomputing, pp.54-64, Seattle,
Washington USA, November 2005.
[6] M, Arora, S.K. Das, R. Biswas, A
Decentralized Scheduling and Load
Balancing Algorithm for Heterogeneous
Grid Environments, in Proc. of International
Conference on Parallel Processing
Workshops (ICPPW'02), pp.:499 – 505,
Vancouver, British Columbia Canada,
August 2002.
[7] M. Aktaruzzaman, Literature Review
and Survey: Resource Discovery in
Computational Grids, School of Computer
Science, University of Windsor, Windsor,
Ontario, Canada.
[8] A. Andrieux, D. Berry, J. Garibaldi, S.
Jarvis, J. MacLaren, D. Ouelhadj and D.
Snelling, Open Issues in Grid Scheduling,
Official Technical Report of the Open Issues
in Grid Scheduling Workshop, Edinburgh,
UK, October 2003.
[9] R. Bajaj and D. P. Agrawal, Improving
Scheduling of Tasks in A Heterogeneous
Environment, in IEEE Transactions on
Parallel and Distributed Systems, Vol.15,
no. 2, pp.107 – 118, February 2004.
[10] R. Freund, “Dynamic Mapping of a
Class of Independent Tasks onto
Heterogeneous Computing Systems”, 8th

IEEE Heterogeneous Computing Workshop
(HCW’99), San Juan, Puerto Rico, 1999, 30
44.



IJRSET Volume 2, Issue 4 Pages: 18-24

[11] N. metropolis, A. Rosenbluth, M.
Rosenbluth, A. Teller and E. Teller,
“Equition of State Calculations by Fast
Computing Machines, Journal of Chemistry
Physics 21(6), 1953, 1087-1092.
[12] I. H. Osman and C. N. Potts,
“Simulated Annealing for Permutation
Flow-Shop Scheduling”, Omega 17, 1989,
551-557.
[13] M. Pinedo, Scheduling: Theory,
Algorithms and Systems, Prentice Hall,
Englewood Clefts, NJ, 1995.
[14] C. R. Reeves (editor), Modern Heuristic
Techniques for Combinatorial Problems,
Oxford, England, Blackwell Scientific
publications, 1993.
[15] V. V. Rene, Applied Simulated
Annealing, Berlin, Springer, 1993.
[16] M. J. Schopf, “General Architecture for
Scheduling on the Grid”, Special issue of
JPDC on Grid Computing, 2002.
[17] G. C. Sih and E. A. Lee, “A Compile-
Time Scheduling Heuristic for Inter
Connection-Constrained Heterogeneous
Processor Architectures”, IEEE transactions
Parallel and Distributed Systems Vol 4,
1993, 175-187.


