
IJRSET JANUARY 2018 Volume 5, Issue 1 Pages: 1-6

NOVEL MAPREDUCE FOR FREQUENT ITEMSET MINING IN
BIG DATA ANALYSIS

1 N. GEETHA
1 Assistant Professor

1 Department of Information Technology,
1 Gobi Arts & Science College.

__
ABSTRACT: Mining Frequent Itemsets is a standout amongst the most essential ideas of
Data Mining. More than two decades, numerous examination works have been done on Frequent
Itemset Mining. Be that as it may, it turns into an extremely troublesome errand when they are
connected to Big Data. Constraint-based FIM has been turned out to be powerful in decreasing
the hunt space in the FIM errand and along these lines enhances the efficiency. What's more, in
all Frequent Pattern Mining calculations creates Frequent 1-itemsets keeping in mind the end
goal to discover the help include (events) of everything the whole exchanges. This assignment is
itself a dreary undertaking in creating Frequent Patterns while considering the tremendous of
present day databases accessible. No express methodology has been laid out in these calculations
to play out the previously mentioned errand. With the assistance of this tree Frequent 1-Itemsets
are discovered rapidly and proficiently which thusly accelerates the age of Frequent Itemsets of
the whole database. Also, to in any case more increment the efficiency of MapReducetask a store
has been incorporated into the Map stage to keep up help tally tree for computing the Frequent-1
itemsets of every mapper. This diminishes the aggregate time of ascertaining Frequent-1 itemsets
since it sidesteps the sort and the consolidate assignment of every Mapper in the original
MapReduce errands. This thus diminishes the aggregate execution time of producing Frequent
Itemsets of the whole database.

Keywords: [Data Mining, Frequent Itemset, Map Reduce, Frequent 1-itemsets, patterns, cache]

__

1. INTRODUCTION
Data Mining is an intense new innovation to
extricate concealed prescient data from vast
databases. It causes, organizations to
concentrate on the most critical data in their
data distribution centers. Data Mining
apparatuses anticipate future patterns and
practices with which representatives can make
proactive, learning driven choices. The
computerized, planned examination offered by

Data Mining moved past the investigation of
the past occasions gave by review apparatuses
like that of choice emotionally supportive
networks. Data Mining apparatuses can
answer business addresses that have
customarily been excessively tedious, making
it impossible to determine. Frequent Pattern
Mining (FPM) is a standout amongst the most
surely understood methods to separate
frequent patterns from data. It assumes a
critical part in affiliation run mining,

IJRSET JANUARY 2018 Volume 5, Issue 1 Pages: 1-6
discovering relationships and patterns and so
forth. Finding Frequent Patterns turns into an
extremely troublesome undertaking when they
are connected to Big Data. Data stockpiling
has expanded exponentially on the planet in
the course of recent years. Data originating
from various sources, for example, web logs,
machine logs, human-created data, and so
forth are being put away by organizations.
This wonder is known as "Big Data" and these
days it is slanting all over. With the
unimaginable quick development of data,
comes the need to investigate the tremendous
measure of data.
FPM implies discovering patterns (itemset,
succession, structure, and so on.) that happens
frequently in a data set. FPM causes us to
recognize the connections or relationships
between's things in the dataset. For instance,
an arrangement of things, for example, paint
and brush, which show up frequently together
in an exchange data set, is a Frequent Itemset.
This data causes the businessperson to
orchestrate these frequent things together
which will actuate paint purchaser to purchase
brush. Another case is Frequent Pattern
disclosure from Web Log data which
distinguishes the navigational practices of the
clients. Think about the situation, for example,
purchasing initial a PC, at that point a Data
Card, and after that a Pen Drive, and if this
pattern happens frequently in a shopping
history database, at that point that pattern is a
frequent successive pattern. Sorts of FPM are
appeared in Figure 1.

Figure 1: Frequent Pattern Mining

The present PCs rely upon vast and quick
stockpiling frameworks. Extensive capacity
abilities are required for some database
applications, logical calculations with huge
data sets, video and music, et cetera. For a few
applications speed turns out to be significantly
more essential. For such sort of uses the cache
memory is utilized. Cache recollections are
little, quick static RAM recollections that
enhances the program execution by keeping a
duplicate of the most frequently utilized data
from the main memory. Parameters of cache
are limit, block (cache line) size and
associativity, where limit is the span of the
cache, block measure is the essential
exchanging unit amongst cache and main
memory, associativity decides what number of
spaces in the cache are potential goals for a
given address reference. At the point when the
cache estimate is more in a framework, at that
point the hit proportion is likewise more. On
the off chance that the data which is being
looked is available in the cache, at that point it
is known as a cache hit. A cache hit is great in
light of the fact that the data which is required
is brought quicker than getting from the main
memory. A cache miss happens if the cache
does not contain the asked for data. This is
terrible in light of the fact that the CPU needs
to hold up until the point that the data is
brought from the main memory. There are
numerous regions in the PC world where
Pareto's Law applies, and cache measure is
unquestionably one of them. In the event that
you have a 256 KB cache on a framework
utilizing 32 MB, expanding the cache by
100% to 512 KB will most likely outcome in
an expansion in the hit proportion of under
10%. Multiplying it again will probably bring
about an expansion of under 5%. In the
genuine 83 world, this differential isn't
recognizable to the vast majority. In any case,
if the framework memory is expanded
enormously then the cache size ought to
likewise be expanded to keep a corruption in
execution. Present day models normally have
two levels of cache (L1 and L2) between the
CPU and main memory. While the L1 cache

IJRSET JANUARY 2018 Volume 5, Issue 1 Pages: 1-6
can perform at CPU speed, the L2 cache and
main memory gets to ordinarily present
latencies in the request of 10 and 100 cycles
separately. Most current work area and server
CPUs have no less than three autonomous
caches: a direction cache-to accelerate
executable guideline bring, a data cache-to
accelerate data get and store and a Translation
Lookaside Buffer (TLB) to accelerate virtual-
to-physical address translation for both
executable guidelines and data. TLB cache is
a piece of the memory administration unit and
it isn't specifically identified with the CPU
caches. Data is exchanged amongst memory
and cache in blocks of settled size, called
cache lines. A cache line is made when a
cache line is replicated from memory into the
cache. The cache passage will incorporate the
duplicated data and in addition the asked for
memory area (now called a tag). At the point
when the processor needs to get a data it first
checks for a relating section in the cache. The
cache checks for the substance of the asked
for memory area in any cache lines that may
contain that address. On account of a cache
hit, the processor promptly peruses or
composes the data from or to the cache. For a
cache miss, the cache designates another
passage and duplicates in data from main
memory, at that point the demand is satisfied
from the substance of the cache. Memory
inertness will be diminished just when the
asked for data is accessible in the cache. In
this way Cache recollections can lessen the
memory latencies just when the asked for data
is found in the cache. Subsequently the hit
proportion can be expanded when the cache is
substantial.

2. LITERATURE SURVEY
Google proposed MapReduce

framework which is essentially utilized for
parallel preparing of vast datasets and it takes
a shot at key-esteem sets. Frequent itemset
mining need to figure support and certainty
which should be possible in parallel utilizing
MapReduce programming model. Quicker
handling can be accomplished by ascertaining

recurrence of things utilizing map capacities
which executes in parallel on set of hadoop
clusters and reduce capacities used to join the
neighborhood frequent things and give
worldwide frequent things. Agrawal in 1993
first proposed mining client exchange
database thing sets issue, now FIM (frequent
itemsets mining) has turned into a basic piece
of data mining. The vast majority of the
present algorithms are arranged into two
gatherings: Apriori-like algorithm and FP-
development (Frequent pattern) algorithm.
Apriori rejects competitor sets by over and
over examining the database. The main
favorable position of FP Growth algorithm is
FP-Tree. At the point when looked with
expansive data, these two algorithms are not
all around adjusted. For the above algorithm,
an answer is to consider just the expansive
limit esteem, the quantity of hopefuls can be
reduced and limited, however this will lead
mining affiliation precludes mistaken because
of low use data. Moens et al proposed two
strategies for frequent itemset mining for Big
Data on MapReduce, First technique DistEclat
is dispersed form of pure Eclat strategy which
upgrades speed by disseminating the inquiry
space equally among mappers, second
technique BigFIM utilizes both Apriori based
strategy and Eclat with anticipated databases
that fit in memory for extracting frequent
itemsets. Preferred standpoint of Dist-Eclat
and BigFIM is that it gives speed and
Scalability Respectively. Dist-Eclat does not
give versatility and speed of BigFIM is less.
Riondato et al has been exhibited Parallel
Randomized Algorithm (PARMA algorithm)
which discovers set of frequent itemsets in
less time utilizing examining technique.
PARMA mines frequent patterns and
affiliation rules from exact data. Subsequently
mined frequent itemsets are inexact those are
near the first outcomes. It finds the inspecting
list utilizing k-implies bunching algorithm.
The example list is only clusters. The main
favorable position of PARMA is that it
reduces data replication and algorithm
execution is quicker. Liao et al displayed a

IJRSET JANUARY 2018 Volume 5, Issue 1 Pages: 1-6
MRPrePost algorithm based on MapReduce
framework. MRPrePost is an enhanced variant
of PrePost. Execution of PrePost algorithm is
enhanced by including a prefix pattern. On
this premise, MRPrePost algorithm is well
reasonable for mining huge data's affiliation
rules. If there should be an occurrence of
execution MRPrePost algorithm is more better
than PrePost and PFP. The steadiness and
adaptability of MRPrePost algorithm is
superior to PrePost and PFP. The mining
aftereffect of MRPrePost is surmised which is
nearer to unique outcome. Xia et al has been
proposed Improved PFP algorithm for mining
frequent itemsets from enormous little
documents datasets utilizing little records
handling technique.

3. PROPOSED WORK
To additionally build the efficiency of creating
FIM, cache is presented with the goal that the
help include can be figured the cache itself.
For this a Modified Map Reduce algorithm
has been proposed. To expand the efficiency
of map reduce errand a cache has been
incorporated into the map stage to maintain
bolster tally tree for computing the frequent-1
itemset of every mapper which is appeared in
Figure 2. As the data in cache can be
immediately gotten it reduces the aggregate
time of figuring Frequent-1 itemsets, since it
sidesteps the shuffle, sort and the consolidate
errand of every Mapper in the first
MapReduce undertakings.

Figure 2: Proposed Architecture of
MapReduce for generating Frequent 1-
itemsets

In each map work for finding the help tally of
everything the help check tree code has been
inserted. The tree is put away in a cache. As
the things are perused from the exchange
database, it winds up plainly less demanding
to get the separate things data, as it is put
away in the cache. In this manner toward the
finish of map stage, the help tally of
everything is ascertained by bypassing the sort
and consolidate period of the first MapReduce
errands. In this way utilizing cache and
Support check tree the help tally of everything
is figured rapidly without experiencing sorting
and joining steps. Hadoop combiners require
all map yields to be serialized, sorted, and
potentially written to circle. To beat this, a
cache has been acquainted with the store the
frequencies 1-itemset values.

4. EXPERIMENTAL RESULTS
Each unique item in the dataset is

considered as a node in the support count tree
which has four attributes, namely the name,
count value, left link and the right link. The
cache size for storing various numbers of
items are given in Figure 3 and Table 1.

Figure 3: Cache size required for storing
different number of items

Cache Size (kb) Unique items

14

60
120
140
180

999

5000
10000
12000
16000

Table 1: Cache size required for storing
different number of items values

IJRSET JANUARY 2018 Volume 5, Issue 1 Pages: 1-6

Figure 4: Performance Comparison of
MapReduce and Modified MapReduce

MapReduce Modified MapReduce

35

20
10

30

15
5

Table 2: Performance Comparison of
MapReduce and Modified MapReduce
Values

Figure 4 is obviously demonstrated that the
execution time to create Frequent Itemsets
utilizing modified MapReduce is less when
contrasted with the first MapReduce
technique. The chart plainly demonstrates that
as the quantity of centers expands the
execution time diminishes impressively in
light of the fact that the database is part
uniformly among the centers. Cumulative
frequent itemsets for 1100000 exchanges are
created which is appeared in Figure 5 and
Table 3.

Figure 5: Performance Comparison of
MapReduce and Modified MapReduce for
merged files

Modified Map Reduce

10

5

85
60

15

5

12
0

80
Table 3: Performance Comparison of
MapReduce and Modified MapReduce for
merged files values

CONCLUSION
The majority of the FPM calculations invest a
large portion of the energy in creating
Frequent 1-itemsets. A basic and simple to
execute bolster tally tree calculation has been
proposed which has decreased the season of
creating frequent 1-itemsets. This calculation
can be effectively installed into any of the
current calculations went for affiliation govern
mining so as to separate Frequent 1-itemsets
and their comparing checks. To in any case
more decrease the execution time of extracting
Frequent Itemsets from Big Data utilizing
MapReduce, a changed MapReduce has been
proposed. In this a cache has been
incorporated into the guide stage to maintain
bolster tally tree for ascertaining the frequent-
1 itemset of every mapper. This decreases the
aggregate time of ascertaining Frequent-1
itemsets since it sidesteps the shuffle, sort and
the join errand of every Mapper in the first
MapReduce undertakings.

REFERENCES
[1]. Banga, Devender and Cheepurisetti, S.
“Proxy Driven FP growth based Prefetching”,
International Journal of Advances in
Engineering and Technology, 2014.
[2]. Baskaran, R., Victer Paul, P. and
Dhavachelvan, P. "Ant Colony Optimization
for Data Cache Technique in MANET",
International Conference on Advances in
Intelligent and Soft Computing, Springer, Vol.
174, pp. 873-878, 2012.

IJRSET JANUARY 2018 Volume 5, Issue 1 Pages: 1-6
[3]. “BigFIM project,”
https://gitlab.com/adrem/bigfim/tree/master.
[4] Chen, Hui, Young, Lin, Tsau, Zhang,
Zhibing and Zhong. J. “Parallel Mining
Frequent Patterns over Big Transactional Data
in Extended MapReduce”, IEEE International
Conference on Granular Computing, pp. 43–
48, 2013.
[5]. Chen, M., Mao, S. and Liu, Y. “Big Data:
A Survey”, Springer, pp. 171- 209, 2014.
[6]. Chen, S., Fu, X., Su, J., Teng, S. and
Zhang, W. “An algorithm of mining frequent
itemsets in pervasive computing”, Third IEEE
international conference on Pervasive
computing and applications, 2008.
[7]. Kuchipudi Sravanthi, T. S. (2015).
Applications of Big data in Various Fields.
International Journal of Computer Science and
Information Technologies , 4.
[8]. M. R. Bendre, M. R. (2015). Big Data in
Precision Agriculture : Weather Forecasting
for Future Farming. 1st International
Conference on Next Generation Computing
Technologies, (p. 7). Dehradun.
[9]. P.Surya, D. A. (2016). The role of big data
analytics in agriculture sector : a survey.
International Journal of Advanced Research in

Biology Engineering Science and Technology
, 9.
[10]. Patil, S. (2016). Big Data Analytics
Using R. International Research Journal of
Engineering and Technology , 7.
[11]. Pradeepa. A, D. A. (2013). Significant
Trends of Big Data Analytics in Social
Network. International Journal of Advanced
Research in Computer Science and Software
Engineering , 5.
[12]. Raghu Garg, H. A. (2016). Big Data
Analytics Recommendation Solutions for
Crop Disease using Hive and Hadoop
Platform. Indian Journal of Science and
Technology , 6.
[13]. Utkarsh Srivastavaa, S. G. (2015).
Impact of Big Data Analytics on Banking
Sector: Learning for Indian Banks.
ELSEVIER , 11.
[14]. Yuvraj S. Sase, P. A. (2014). Big Data
Implementation Using Hadoop and Grid
Computing. International Journal of
Innovative Research in Science, Engineering
and Technology , 6.
[15]. Chen, Qi, Liu , Cheng and Xiao. Z, “
Improving MapReduce Performance Using
Smart Speculative Execution Strat

egy ”, IEEE Transactions on Computers, 2013.

