
IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16

IMPROVED SUPPORT VECTOR BASED RANKING MODEL
AND FEATURE SELECTION METHODS FOR BUG REPORTS

ANALYSIS
1 K. AARTHI PRIYA, 2 S. VETRIVEL, 3 N. NITHYA

1 Assistant Professor, 2 Assistant Professor, 3 Assistant Professor
1 Department of Computer Science, 2 Department of Information Technology, 2 Department of

Business Administration & Computer Applications,
1, 2, 3 AJK College of Arts & Science, CBE.

ABSTRACT- Bug report tracking systems have been used toward make possible the
maintenance and development of software. On the other hand, duplicate entries presented in
the bug reports in such software system are able to significantly force productivity inside
software project. This reduction in productivity happens since duplicate entries demand more
time designed for search and examination of bug reports. When a new bug report is received,
developers frequently require to reproducing the bug and performing code reviews to discover
the cause, a process with the purpose of can be difficult and time consuming. To solve this
problem in this paper, Support Vector Machine (SVM) system is proposed that considers
features with the purpose of association related to lexical gap via the use of project precise
Application Programming Interface (API) report to attach Natural Language parameters in the
bug report by means of programming language with the purpose of build in the source code.
The major contribution of this paper is to propose Support Vector Machine (SVM) ranking
method which solves bug report problem related to source files with the purpose of permits the
faultless integration of a different type of features. Support Vector Machine (SVM) ranking
approach counts the frequency value toward each bug reports make use of formerly fixed bug
reports as training examples designed for the proposed ranking-model in combination by
means of a learning-to-rank technique; with the file dependency graph toward describe features
with the purpose of confine a determine of code complexity. The extensive experimentation
and comparisons is done to traditional ranking methods, it concludes that the proposed FOFR
system of the impact with the purpose of features producing higher ranking accuracy and lesser
code complexity.

Keywords: [Support Vector Machine (SVM), Application Programming Interface (API), Bug
report, tracking systems, feature evaluation.]

1. INTRODUCTION
In general software bug or defect is a

coding error with the purpose of might basis
unintentional or unpredicted activities of the
software system [1]. Leading discovering

abnormal activities of the software system, a
developer or a software user determination
report it in a document, named a bug reports.
Bug report gives information with the
purpose of might help in fitting a bug by

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
means of the overall objective of enhancing
the quality of software system. A huge
number of bug reports might be opened
throughout the improvement life-cycle of a
software system. Example considers there
are 3,389 bug reports have been generated
from Eclipse product in 2013 by you. In a
software group, bug reports are expansively
used by means of together managers and
developers in their daily software
development procedure [2]. A developer who
is allocating a bug report frequently requires
replicating the abnormal activities [3] and
performing code evaluation [4] in order to
discover the faults. On the other hand, the
assortment and irregular quality of bug
reports be able to formulate this procedure
nontrivial. Fundamental information is
frequently missing from a bug report [5].
Bacchelli and Bird [3] reviewed the software
quality product with 165 managers, 873
programmers, and described with the purpose
of detecting defects needs a higher level
understanding of the program and knowledge
by means of the appropriate source code
files. From the survey it concludes that the
798 respondents answered with the purpose
of it takes long time to analysis unknown
files. If the number of source files in a
software project or prototype is generally
huge, the number of files with the purpose of
include the bug is generally extremely small.
As a result conclude that an automatic
approach with the purpose of ranked the
source files with related to their relevance
designed for the bug report might speed up
the bug detecting step via lessening the
investigate to a smaller number of probably
unfamiliar files. If the bug report is
understudied via user given query and the
source files in the software system are
examined as a collection of documents, then
the problem of discovering source files with
the purpose is appropriate for a known bug
report could be represented as a normal
process in Information Retrieval (IR) [6]. For
this purpose, proposed a new ranking model
to solve ranking problem, here source files
are ranked with respect to their relevance to a
known bug report. In this framework,

relevance is associated via the use of
likelihood with the purpose of a specific
source file consists of the source of the bug
discussed in the bug report. This ranking
model, ranking function is represented as the
weighted combination of attributes, where
the attributes described greatly on
information precise to the software
engineering area in order to calculate
appropriate relationships among the bug
report and the source code file. While a bug
report might divide textual tokens by means
of its appropriate source files, in common
there is a considerable intrinsic mismatch
among the natural language working in the
bug report and the programming language
used in the source code [7]. Some of the
ranking methods in the literature is
performed based on the lexical based
matching scores value with suboptimal
performance, in measurement appropriate to
lexical mismatches among natural language
statements in bug reports and technological
terms in software model. The software
systems consists of many attributes with the
purpose of association the related lexical gap
by means of using project particular API
documentation in the direction of connect
natural language terms in the bug report by
means of programming language creates in
the source code. Moreover, source code files
should consist of a many number of methods
of which simply a small number might be
sourcing the bug. In the same way, the source
code is syntactically parsed into methods and
the attributes are designed to make use of
method level measures of significance
designed for a bug report. It has been
formerly experimental with the purpose of
software procedure metrics are more
significant when compared to code metrics in
software defect detection process [8].
Accordingly make use of the change history
related to source code as a well-built report
for linking fault-prone files by means of bug
reports. One more helpful domain specific
examination is with the purpose of a buggy
source file might origin more than one
abnormal activities, and consequently might
be dependable designed for comparable bug

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
reports. If associate a bug report by means of
a user and a source code file among an item
with the purpose of the user might like or not,
subsequently illustrate an analogy through
recommender systems [9] and make use of
the model of collaborative filtering.
Consequently, if formerly fixed bug reports
are textually related by means of the current
bug report, then files with the purpose of
have been related through the related reports
might moreover be appropriate for the
current report. In order to improve the
accuracy of change management processes,
some of the organization should use domain
specific systems usually named as bug-
trackers toward deal with accumulate and
hold change needs moreover called as bug
reports. A bug report is defined as a software
object with the purpose of defines some
defect, development, alteration request with
the purpose of is submitted toward a bug
tracker; usually, bug report submitters are
developers, users, or testers. Those types of
software systems are helpful since changes
toward be completed in software be able to
be rapidly acknowledged and presented
toward the suitable people [10]. Examples of
those type of software bug report systems are
Bugzilla (http://www.bugzilla.org), Mantis
(http: //www.mantisbt.org) and Trac
(http://trac.edgewall.org). These software
bug report systems , bug reports is stored by
means of a diversity of fields of free text and
custom fields described related to the
requirements of each project. In Trac, for
instance it is described as the methods and
their fields designed for review and
prescribed details of a bug report. In the same
bug report it is able to moreover be recorded
information related to the software version,
dependencies among other bug reports that
find the duplicate bug reports, for instance,
and the person who determination is
allocated to the bug report, between other
information. However throughout the
development of software life cycle model of
a bug report and their related comments have
been integrated into programming model to
help to solving it. Additional challenges
have presented by the use of bug trackers

between them those issues are dynamic
allocation of bug reports [11], change impact
evaluation and effort evaluation [12],
software quality of bug report definition [13],
software analysis and traceability [14], and
detection of duplicate bug reports. To solve
all of these problems in this paper presents a
new feature ranking model that finds bugs
based on their count value of each feature in
the bug report .The major contribution of the
research work is described as follows,
Support Vector Machine (SVM) system
considers features with the purpose of
association related to lexical gap via the use
of project precise Application Programming
Interface (API) report to attach Natural
Language parameters in the bug report by
means of programming language with the
purpose of build in the source code. The
major contribution of this paper is to propose
Support Vector Machine (SVM) ranking
method which solves bug report problem
related to source files with the purpose of
permits the faultless integration of a different
type of features. Support Vector Machine
(SVM) ranking approach counts the
frequency value toward each bug reports
make use of formerly fixed bug reports as
training examples designed for the proposed
ranking-model in combination by means of a
learning-to-rank technique; with the file
dependency graph toward describe features
with the purpose of confine a determine of
code complexity.

2. LITERATURE REVIEW
There is a multiplicity of work

correlated toward mining bug report
repositories. Conversely, the work establish
scheduled the literature is relatively new. In
common, these types of repositories
encompass been mined used for dissimilar
purposes, such as: bug reports parallel ,
dynamic assignment of bug reports, software
evolution as well as traceability, modify
impact analysis along with effort estimation,
furthermore value of bug report descriptions.
All of these proposed categories encompass
regular objective toward develop software
development, saving costs through software

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
maintenance. After that, discuss about every
work associated toward the mentioned
purposes. Furthermore, it will exist specified
more attention on the way to process details
involving work related toward duplicate bug
reports detection, because this work as well
addresses such purpose. Duplicate bug
reports discovery consists taking place
thorough used for past bug reports toward
identify similar bug reports so as to illustrate
the similar issue at the same time as the one
being reported, during order toward avoid
duplicate submission. In that way, the
following work usually proposes methods on
the way to aid such detection. First toward
investigate bug reports similarity [15] explore
during their occupation were software
failures mechanically submitted as soon as
the software do not work properly. Such
reports were collected of information
(profile) regarding state of the software by
the side of the time failure occurred, as well
as possibly through execution stack trace.
This category of information is able to raise a
general problem encounter by developers:
they take delivery of additional reports than
the times they encompass available toward
investigate them. Thus the proposed an
automated preserve for classify these
information during organize toward prioritize
as well as diagnostic their causes. The work
perform within is closer toward ours than the
first individual described [16]. It investigated
the duplication problem cause through
ordinary language bug reports submission.
The proposed toward grouping related bug
reports into centroids, consequently it would
exist possible on the way to evaluate
incoming bug reports toward centroid
through high similarity. In this way, each bug
report was processed toward compute value
used for Term Frequency-Inverse Document
Frequency (TF-IDF) [3] along with placed
during centroid through higher similarity.
The TF-IDF used for a single centroid was
combination of the TF-IDF[3] of every one
bug reports within same centroid. The effort
reports results used for different thresholds,
as well as thresholds for classification along
with for the length of recommendation list.

The move toward achieve 29% of precision
as well as 50% of recall by its best. The most
important difference from this work as well
as our approach is so as to technique used
during tool proposed doing not group the
majority bug reports into centroids. In
addition, our instrument is not a
recommendation organization; users
encompass toward perform investigate during
order toward find similar bug reports. The
recent work [17] addressed the problem of
detect duplicate bug reports with Natural
Language Processing (NLP) techniques. One
advantage of such work was identification of
two types bug reports: 1) individuals so as to
explain same problem along with 2)
individuals to facilitate explain two different
problems through the same cause. The former
describe equal failure, normally use related
vocabulary, as well as the latter describe
special failures along with may well use a
different vocabulary. In the approach [18]
toward moderate bug reports duplicate
problem use NLP as well as execution
information. Implementation information is
disturbed toward information concerning the
software execution while error occurred, such
because technique calls otherwise variables
state. This type of data was combined by
means of natural language data toward get
better recall. In order toward validate
approach it was perform an experiment
through Firefox as well as Eclipse data,
resultant during a recall of 67%-93% next to
its best. These outcomes are very suitable if
compare through additional related work.
Though, several points should exist outline
toward experiment as well as the approach
itself. Also known because Bug report
Triage, this step of bug description tracking
procedure consists of identify which be best
developer toward explain a new bug report.
The work [19-20] as well proposed a method
toward bug report assignment, though during
such work it was use information as of
versioning systems mutual through bug
reports information. In additional work [21],
it was compare which category of repository
is improved toward allocate best developer
toward a bug report. The work concluded so

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
as to use bug description repositories is better
if the objective is toward establish expertise
group during less false positives, whilst
versioning systems are better used for
retrieving each and every one experts used
for a specified problem. Mining bug
repositories used for software evolution as
well as traceability is concerned through
under-standing what drives changes perform
within software along the time. Software
traceability regularly involve documents,
supply code, bug reports, amongst extra
assets. Usually, research related during this
purpose combine data from source code
repositories furthermore bug report
repositories. Sandusky et al [22] conduct an
empirical research regarding Bug Report
Networks (BRNs) during open source
projects. According toward them, a BRN is
produced while member of a software growth
project asserts duplication, dependency,
otherwise reference relations amongst bug
reports. They pointed so as to BRNs
considerate preserve use decrease cognitive
furthermore organizational effort, developed
representation of software as well as work-
organization issues, and rearrange
relationships amongst project members.
Antoniol et al [23] planned a framework
toward merge information on or after bug
description repositories, source code, as well
as versioning systems. Such framework aids
developer toward browser along with
navigates during information provide through
such artifacts inside interconnected way. For
example, many developer probably make use
of framework toward visualize what bug
reports were fixed at the time of known
software version. Moreover, he/she might
well imagine what files of source code were
altered or changed. Koponen and Lintula [24]
introduce a new software bug report
prediction methods toward incorporate
versioning systems and bug report database
from history files. It used information from
Apache HTTP Server and Firefox. They also
analysis the changes in software projects
were driven by means of bug reports. From
the results it concludes that simply a less
percentage of changes were complete since

of bug reports in Apache HTTP Server. On
the other hand, in Firefox 60% of alters are
guided by means of bug reports.
Furthermore, they revealed with the purpose
of developers who performed little changes
are further appropriate toward be showed by
means of bug reports. In recent times,
researchers have introduces and develops a
new bug report prediction methods with the
purpose of give attention to ranking source
files designed for known bug reports
repeatedly [25]. Saha et al [25] syntactically
parse the source code into four major
categories are class, method, variable, and
comment. The review and the explanation of
a bug report are measured as two doubt
fields. Textual similarities are calculated for
each of the eight document type in the
direction of query field pairs and then
summed up addicted to a final ranking
function. Zhou et al [26] also performs bug
report prediction model by considering not
only lexical similarity among a new bug
report and every source file however also
provide more weight in the direction of larger
size files and files with the purpose of have
been fixed earlier than for similar bug
reports. This Bug Locator relying on single
parameter and performed based on three
different features. The parameter is tuned by
using these three different features and it is
used for experimentation, which means with
the purpose of the results reported in their
work related to performance of the software
system. It is consequently uncertain how well
their Bug Locator simplifies in the direction
of unobserved bug reports.

3. PROPOSED METHODOLOGY
Support Vector Machine (SVM)

system considers features with the purpose of
association related to lexical gap via the use
of project precise Application Programming
Interface (API) report to attach Natural
Language parameters in the bug report by
means of programming language with the
purpose of build in the source code. The
major contribution of this paper is to propose
SVM ranking method which solves bug
report problem related to source files with the

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
purpose of permits the faultless integration of
a different type of features. SVM ranking
approach counts the frequency value toward
each bug reports make use of formerly fixed
bug reports as training examples designed for
the proposed ranking-model in combination
by means of a learning-to-rank technique;
with the file dependency graph toward
describe features with the purpose of confine
a determine of code complexity. In the
experimentation work wide-ranging
evaluation and comparisons is done by
comparing the results to state-of-the-art
methods, it concludes that the proposed
Support Vector Machine (SVM) system have
achieves higher ranking accuracy. The
proposed Support Vector Machine (SVM)
system is trained to determine a matching
score designed for any bug report ‘r’ and
source code file ‘s’ grouping. The ranking
score function f(r,s) is described as the
weighted value by means of sum of k
features, where every feature ϕ (r, s))
evaluates the a precise relationship among
the source file s and the bug report r:

f(r, s) = w Φ(r, s)= w ∗ϕ (r, s) (1)

Known bug report r is given as input for
evaluation during testing and training time
.The FOFR system determines the score
f(r,s) for each source code s in the software
project and make use of this score value to
rank all the codes in either ascending or
descending order. The user is then obtainable
by means of a ranked list of files, among the
expectation with the purpose of files
emerging advanced in the list are more
possible toward be appropriate for the bug
report, i.e., further expected to include the
source of the bug. In this FOFR system tries
to determine a set of parameters designed for
which the rank scoring function ranks all
source files with the purpose of known to be
appropriate for a bug report on the top of the
list designed for with the purpose of bug
report.

Figure 1- System architecture for training and testing

4. FEATURE REPRESENTATION
The proposed FOFR system needs a

bug report - source file pair (r, s) have been
denoted as a vector of k features Φ(r, s) =[ϕ (r, s)] . The entire set of twenty
features used in the FOFR system is

discussed in the following section. These
entire features in the bug report have been
categorized into two major user defined
query type those are described as follows:

Testing

New Bug
Reports

Support Vector Machine
(SVM)

Software repository

Training

Fixed Bug
Reports

Learning to rank algorithm Software repository

Ranked
source files

DevelopersUsers

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
Query dependent: This type of featuresϕ (r, s)with the purpose of rely on both the
bug report r and the source code file s. A
query dependent feature denotes a specific
association among the bug report and the
source file, and thus might be helpful in
formative straightforwardly whether the
source code file s consists a bug with the
purpose of that is appropriate for the bug
report r.

Query independent: This type of features
relying on only the source code file, i.e., their
computation does not need information of the
bug report query. This type of feature might
be used to determine the likelihood with the
purpose of a source code file consists of a
bug, irrespective of the bug report. Make use
of Vector Space Model (VSM) for ranking
purpose. This VSM, both the query and the
document are denoted as vectors of term
weights. For known bug report or a source
code file report d calculate the term weightsw , for each term t in the vocabulary
depending on the general tf.idf weighting
scheme in which the term frequency factors
are regularized is described as follows:w , = nf , × idf (2)nf , = 0.5 + 0.5 × tf ,max∈ tf , idf= log Ndf

(3)

The term frequency factor tf , is defined as
the number of occurrences of each term t in
bug report document d, whereas the
document frequency factor df is defied the
number of bug report documents in the bug
report history repository with the purpose of
includes the term t. N is to the total amount
of documents in the bug report history
repository, whereas idf is denoted as the
inverse document frequency, which is
determined via the use of logarithm in order
to reduce the result of the document
frequency factor in the entire term weight.

Surface Lexical Similarity
For a source code file, make use of its

entire code and comments. In order to
tokenize an input history bug report
document initially divide the text document
into a bag of words by using white spaces.
From this results then remove punctuation,
numbers, and stop a word that is conjunctions
or determiners. The bag of words illustration
of the bug report document is then improved
by means of the resulting tokens “Work” and
“Bench” in this example even as also
maintenance the unique word as a token.
Lastly, each and every one word is
concentrated toward their stem by means of
the Porter stemmer, as experimented in the
NLTK package. This procedure will decrease
derivationally similar words are
“programming” and “programs” to the same
stem “program”, which is well-known to
contain a helpful impact on the performance
of the final system. Let V be the vocabulary
of each and every one text tokens show in
bug reports and source code files.

Let r = w , ∈ V and s = w , ∈ V is
denoted as the VSM vector from the bug
report r and the source code file s, where the
term weights w , and w , are calculated by
using the tf.idf formula given in Equation (2).
Once these values are calculated then textual
similarity among a source code file and a bug
report have been calculated by using cosine
similarity among their related vectors:

Sim(r, s) = cos(r, s) = r s|r| |s| (4)

In VSM, cosine similarity have been applied
straightly and used as feature for ranking
score evaluation. But cosine similarity
measure ignore the fact with the purpose of
bugs are frequently restricted in a little part
of the code. If the source code becomes very
large, it related cosine similarity norm
determination will also very large, which
results lesser cosine similarity value to each
bug report. To overcome these problems this
work uses a new AST parser directly from
the Eclipse JDT tool and split the source code

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
into many methods in order to compute
cosine similarity to bug report. From this
AST parser, each method m is considered as
individual document and determines its
lexical similarity to each bug report via the
use of cosine similarity function. After-that
finally determine surface lexical similarity by
using the following formula is described as
follows,ϕ (r, s)= max({sim(r, s)}∪ {sim(r, m)|m ∈ s}) (5)

From the greatest value of each and everyone
per-method similarities, then complete file
similarity. This is clearly under the category
of query-dependent feature.

API-Enriched Lexical Similarity
In wide-ranging, many of the text in a

bug report is described in normal English
language, while most of the substance of a
source code file is written in a Java
programming language. Consequently used
for every method in a source code file mine a
set of class and boundary names from the
explicit category declarations of each and
every one local variables. By means of the
project API condition, find the textual
definitions of classes and interfaces, consists
of the definitions of each and every one their
direct or indirect super-classes. For each
method m generate a document m.api by
means of focus the related API definitions.
At lastly, take the API definitions of each and
every one method in the source file s and
concatenate them into an entire document. api =∪ ∈ [m. api] then calculate an API
lexical similarity feature is described as
follows,ϕ (r, s)= max({sim(r, s. api)}∪ {sim(r, m. api)|m ∈ s}) (6)

From the greatest value of each and everyone
per-method similarities, then complete file
API similarity. This is clearly under the
category of query-dependent feature.

Collaborative Filtering (CF) Score
CF have been used earlier in other domains
to enhance the accuracy of software
recommender systems, therefore it is
predictable to be helpful in information
retrieval situation, too. Known a bug report r
and a source code file s, consider br(r, s)be
the group of bug reports designed for which
file s was predefined earlier r was bug
reported. The CF feature is then computed as
follows,ϕ (r, s) = sim r, br(r, s) (7)

The feature calculates the textual similarity
among the text of the present bug report r and
the summaries of each and every one the bug
reports in br(r, s). This feature is also under
the category of query-dependent.

Class Name Similarity
A bug report should straightforwardly

state a class name in the review, which gives
a useful information with the purpose of
related source file implementing with the
purpose of class might be appropriate for the
bug report. For instance, the summary of the
Eclipse bug report 409274 consists of the
class names Workbench Window,
Workbench, and Window after tokenization,
however simply WorkbenchWindow.java is a
relevant file. Let s:class is represented as the
name of the major class experimented in
source file s, and |s:class| the name length.
From the observation compute a class name
similarity feature is described as follows:ϕ (r, s)= |s. class| if s. class ∈ r0 otherwise (8)

This feature is also under the category of
query-dependent and computed automatically
by using feature scaling step.

Bug-Fixing Recency
The source code change history gives

the data with the purpose is able to help and
find fault-prone files [27]. For instance, a
source code file with the purpose was fixed
extremely newly is more probable toward
still consists of bugs than a file with the

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
purpose of was last fixed long time in the
history, or never fixed. let br(r, s) be the set
of bug reports for which file s. Let last(r, s)
be the most new formerly fixed bug.
Furthermore designed for some bug report r,
permit r:month indicate the month when the
bug report was generated. Then describe the
bugfixing recency feature in the direction of
the converse of the distance in months among
r and last(r, s)ϕ (r, s)= (r. month − last(r, s). month+ 1) (9)

Consequently, if s was proceeding fixed in
the similar month with the purpose of r was
created, ϕ (r, s) is 1. If s was last fixed one
month previous to r was generated, ϕ (r, s)
is 0.5.

Bug-Fixing Frequency
A source file with the purpose of has been
regularly fixed might be a faultprone file.
Accordingly describe a bug-fixing frequency
feature from the present bug report:ϕ (r, s) = |br(r, s)| (10)
This feature is also under the category of
query-dependent and computed automatically
by using feature scaling step. Neither of the
two features ϕ (r, s)or ϕ (r, s) depending on
the content of the bug report r. On the other
hand, their computation still relies on the
time duration of the bug report, so regard as
the two modification history features as
query dependent.

Structural Information Retrieval
By calculating similarities of each

method and then maximizing across each and
every one method in a source file follows the
procedure of IR approach [28]. Here the
author proposed a report-based bug
localization approach which determines the
final ranking function score by the
summation of lexical similarities of each and
every one possible eight document-query
field pairs. The eight features ϕ to ϕ
determined to each input fields source file

and the bug report in their entirety described
as follows,ϕ (r, s)= sim(r. summary, s. class) (11)ϕ (r, s)= sim(r. summary, s. method) (12)ϕ (r, s)= sim(r. summary, s. variable) (13)ϕ (r, s)= sim(r. summary, s. comment) (14)ϕ (r, s)= sim(r. description, s. class) (15)ϕ (r, s)= sim(r. description, s. method) (16)ϕ (r, s)= sim(r. description, s. variable) (17)ϕ (r, s)= sim(r. description, s. comment) (18)

File dependency graph model
Wait for complex code toward be

more prone to bugs than simple code.
Consequently, the complexity of the source
code file enclosed in a file could give a
further functional signal with related to the
likelihood with the purpose of the file
contains bugs. A correct measure of code
complexity might needs a correct
representation of the semantics of the code.
Since a wide-ranging semantic examination
of code is presently not sufficient option to a
classification of code complexity depending
on syntactic features. For instance, a proxy
evaluation designed for the complexity of a
source code file might be described as
follows: 1) The complexity increases by
means of each new class with the purpose of
is second-hand in the code. Because each
class might be mapped to a specific source
code file with the purpose of implements it,
be able to reformulate this property and say
with the purpose of the complexity of a
source code s is absolutely correlated by
means of the number of source code files on
which s relies on the number of file addiction
of source code file s. 2) The complexity of a
source code s relies on the amount of
dependencies between files, in addition it
also rely on the complexity of each

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
dependencies. If s relies on two other source
files s1 and s2, ,it concludes that the first
source file is more complex than the second
source file ,similarly source file one have
produces more bugs than that of the source
file two. With the purpose is to say, by means
of using a complex construct is much
complex than by means of using an easy
construct, and consequently more expected
toward direct to bugs.

3) The perceived difficulty of a code artifact
that is class, source code file reduces by
means of each extra use, as programmers
develop into more familiar through it and
consequently fewer possible to make use of it
wrongly.

4) The complexity of source code file is
relies on factors of each methods with their
file dependencies. This is a catch-each and
every one component of the complexity
measure with the purpose of though complex
to completely capture formally requires to be
addressed in some helpful set description of
code complexity. The above mentioned three
properties are applied to solve code
complexity with the purpose is similar to the
description of web page quality used in the
PageRank algorithm [29], where a hyperlink
from page p1 to page p2 confers to p2 a
fraction of the quality of p1, depending on the
statement with the purpose by linking to p2,
the creator of p1 thinks that p2 is of high
quality. Let G =(E, V) dependency graph to
represent the software project, where V is
the set of source code files and edget → s ∈ E represents with the purpose
source file t is used in source file s that the t
is a file dependency of s. Additionally, let
s.inLinks and s.outLinks denote the number
of edges related to source file s and leaving
from s, correspondingly. Then the PageRank
complexity of a source code file s have been
described as follows,K(s) = α × K(t)|t. outlinks|→ + (1 − α) × 1|V|

(19)

The initial term confine the first three
properties specify above: 1) each file
dependency t increases the complexity of s;
2) a source file t’s involvement in the
direction of the complexity of s relying on
the complexity of t itself; 3) t’s complexity
contribution decreases by means of the
number of files using it. The second term
confines the fourth part of the complexity: 4)
a fraction of the overall complexity of s is
appropriate in the direction of factors not
captured all the way through file
dependencies. Designed for
straightforwardness and tractability, let us
presume that these other sources of
complexity are circulated uniformly over
each and every one the source code files in a
project. The damping factors are denoted as
the percentage of complexity with the
intention of expected toward be captured all
the way through file dependencies. Specified
a source code file s calculate the number of
file dependencies of s as well as the number
of files with the purpose of depending on the
number of outlinks of s:ϕ (r, s) = s. inlinks (20)ϕ (r, s) = s. outlinks (21)

PageRank score
Complexity of a source code file have

been measured using PageRank approach is
described as follows,ϕ (r, s) = PageRank(s) (22)

Authority and Hubs score
The Hubs and Authorities [30]is also

named as Hyperlink- Induced Topic Search
(HITS) used for determining web pages by
means of high quality data on a specific topic
and web pages via high quality suggestion
links designed for each data. A web page by
means of high authority score is documented
as an expert by means of provides relevant
data on a topic, and is consequently linked by
means of many hub pages. A web page
through a high hub score is documented as a
good list of links in the direction of numerous
authority pages. In a Java project, an abstract

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
class with the purpose is implemented by
means of several other files is predictable to
have a high hub score. Correspondingly, a
source code file with the purpose of consists
the experimentation of a class with the
purpose of extends another class and
experiments several interfaces is predictable
to have a high authority score,ϕ (r, s) = Hub(s) (23)ϕ (r, s) = Authority(s) (24)

Bug-Fixing Frequency occurrence
The proposed SVM model weight

values of each bugs is computed from bug
fixing frequency toward each bug reports r
corresponding by means of source file s is
calculated not only by considering bug
reports or query itself, consideration of both.
The FOFR weight values is calculated by
taking both frequent occurrence of the bug
reports r FQ = {fo , … fo } and each bug
reports BR = {br , … br } .The SVM ranking
is used for learning frequency occurrence of
bug reports ranking functions with the
purpose of aim thus reducing the required
bug’s reports error. Support Vector Machine
(SVM) has been getting popularity in
machine learning since proposed and has
been extensively used to solve the problems
of pattern recognition and regression
estimation [31]. The original concept of SVM
is proposed for binary classification. Given a
training set(x , y), i = 1, 2,・・・ , n, x ∈ R , where
xi is the ith input vector of d-dimension,y ∈ {−1, +1} is the corresponding class
label, and n is the number of training
samples, SVM constructs a separating
hyperplane that separates the training vectors
perfectly (supposing that the training set is
linearly separable) with the closest training
vectors beside the hyperplane as far as
possible away from those in the other class.
This amounts to solving the following
optimization problem

min
ω, 12 |ω| s. t y (〈ω, x 〉 + b) ≥ 1 (25)

where ω and b are the undetermined
parameters in the hyperplane < ω, x + b >= 0. In the real world applications, however,
most problems are nonlinear [32]. In this
case, the nonlinear data need to be mapped to
a new space and allow for wrongly classified
samples. Using the Lagrange method, the
optimization problem (25) in the nonlinear
case with a soft margin can be transformed to
the following dual formmin

α
α

− 12 α α y y 〈Φ(x), Φ x 〉 s. t. 0 ≤ α

≤ C, α y = 0
(26)

Where α is the Lagrange multiplier, Φ(x) is
the nonlinear mapping function and C is the
penalty coefficient denoting the extent to
which we restrict wrongly classification. The
final decision function isClass(x) = sign(α y< Φ(x), Φ(x) > +b) (27)

The inner product in the new feature spaceK(x, y) =< Φ(x), Φ(y) > is called kernel
function. The introduction of kernels
broadens greatly the application of SVM.
Besides the linear kernel, of which the
corresponding feature space is just the
original space, Radial Basis Function (RBF)
kernel is the most frequently used kernel
[33]. Its expression is

K(x, y) = e | |
σ , σ > 0 (28)

SVM-RFE is first proposed that selects
features in the way of backward elimination.
Specifically, in each iteration that removes
one feature which influences the least the
value of the objective function. The objective
function is J = ½||ω||2 according to (27).
Here, the same as in most related works, we

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
adopt the linear kernel. According to the
Optimal Brain Damage (OBD) algorithm ,
the change of the objective function with
respect to the removing of the ith feature
satisfies∆J(i) = ∂J∂ω

∆ω + ∂ J∂ω
(∆ω) (29)

∆J(i) = (∆ω) (30)

can ignore the first order term of (2) at the
optimum of J, which leads to high accuracy.
Therefore, we remove features iteratively in
terms of the absolute or squared value of ω
as Δω equals ω in the case of removing the
ith feature. The detailed procedure of SVM-
RFE can be described as follow

1) Initialize the original feature set as F.

2) Train a linear SVM with feature set F.

3) Compute the weight vector ω = ∑ y x α
4) Remove one feature with the smallest ω
value from F.

5) Repeat steps 2 to 4 until the size of F
equals the predefined size of the final feature
subset.

The final score value is normalized by means
of the summation of the edit distance of each
frequently happened bug reports toward the
closest one in the dataset. Ranked sets of
frequently occurred bug reports are used as
training data designed for a ranking function.
The computed ranking function has been
used toward rank the frequently occurred bug
reports as well as to score disregarded bug
reports.

Feature scaling
Features with widely different ranges

of values are detrimental in machine learning
models. Feature scaling helps bring all
features to the same scale so that they
become comparable with each other. For an
arbitrary feature ϕ, let ϕ. min and ϕ. max be
the minimum and the maximum observed
values in the training dataset. A feature f may

have values in the testing dataset that are
larger than ϕ. max, or smaller than ϕ. min.
Therefore, examples in both the training and
testing dataset will have their features scaled
as follows:ϕ

= ⎩⎪⎨
⎪⎧ 0 if ϕ < ϕ. minϕ − ϕ. minϕ. max − ϕ. minif ϕ. min < ϕ ≤ ϕ. max1 if ϕ ≥ ϕ. max

(31)

This system is proposed that considers
features with the purpose of association
related to lexical gap via the use of project
precise Application Programming Interface
(API) report to attach Natural Language
parameters in the bug report by means of
programming language with the purpose of
build in the source code. The major
contribution of this paper is to propose FOFR
ranking method which solves bug report
problem related to source files with the
purpose of permits the faultless integration of
a different type of features with the purpose
of confine a determine of code complexity.

4. RESULTS AND DISCUSSION
In the literature many bug localization

methods have been used just one code
revision to evaluate the software system
performance depending on multiple bug
reports. Therefore, via just one revision of
the software source code package used for
experimentation should increases
performance with the purpose of
overestimate the normal performance of the
system when second-hand in practice. For
instance, the dataset collected from [34]
consists of 3,075 bug reports via a fixed
version of the Eclipse 3.1 source code
package. One of the files with the purpose of
was fixed designed for this bug report is
MethodBinding.java. At the time the bug
report was submitted, this class mightn’t
consists of a isVarargs() method. The
occurrence of potential bug-fixing
information in the predetermined revision
dataset is probable in the direction of direct
toward an unrealistic approximation of the

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
system performance, as the bug report has a
larger textual similarity by means of the
future version of the MethodBinding.java file
than by means of the current version.

4.1. Performance Evaluation Metrics
Given a test dataset of bug reports

overall system performance is then calculated
using the following evaluation metrics:
Accuracy@k evaluates the percentage of bug
reports used for which the software system
creates at least one correct suggestion in the
top k ranked files.
Prec@k is the retrieval precision over the top
k documents in the ranked list:
Prec@k= # of relevant docs in top k/ k Recall
is the fraction of the k documents with the
purpose of is appropriate to the query with
the purpose of is effectively retrieved.recall= |{relevant documents} ∩ {Retrived Documents}||{relevant documents}

Figure 2- Sensitivity and Specificity comparison vs
methods

From the experimental results it is explained
that for the bug report dataset the proposed
SVM algorithm produces 90.895 % and VSM
produces 92.357% is illustrated in Figure 2.
It concludes that the proposed SVM
algorithm produces higher sensitivity value
and less error rate when compared to all
methods. From the experimental results it is
explained that for the bug report dataset the
proposed SVM algorithm produces 5.2568%
and VSM produces 1.9632% is illustrated in
Figure 2. It concludes that the proposed SVM
algorithm produces higher specificity value
when compared to all methods.

Figure 3 - Precision and Accuracy comparison vs
methods

From the experimental results it is explained
that proposed SVM algorithm produces 97.81
% and VSM produces 96.25% precision
value is illustrated in Figure 3. It concludes
that the proposed SVM algorithm produces
higher precision value when compared to all
methods. From the experimental results it is
explained that proposed SVM algorithm
produces 97.28% and VSM produces 94.72%
is illustrated in Figure 3. It concludes that the
proposed SVM algorithm produces higher
accuracy value when compared to all
methods.

Metho
ds

Sensi
tivity

Specif
icity

Preci
sion

Accur
acy

VSM 92.35
7

1.963
2

96.25 94.72

SVM 90.89
5

5.256
8

97.81 97.28

Table 1- Metrics results comparison vs methods

CONCLUSION AND FUTURE
WORK

To find a bug, developers make use of
not only the information of the bug report
however in addition gathering domain
knowledge appropriate to the software
project. In this paper work introduces a new
learning based ranking approach with the
purpose of imitate the bug discovering
procedure employed by developers. Known
a bug report, the ranking score value of each
source file is calculated as a weighted
grouping of an array of features, where the
weights are trained repeatedly by using
learning based ranking approach. Support

0

20

40

60

80

100

Sensitivity Specificity

R
es

ul
ts

 o
f

pe
rc

en
ta

ge
(%

)

VSM

SVM

0

20

40

60

80

100

120

precision accuracy

R
es

ul
ts

 o
f

pe
rc

en
ta

ge
(%

)

VSM

SVM

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
Vector Machine (SVM) system is proposed
that considers features with the purpose of
association related to lexical gap via the use
of project precise Application Programming
Interface (API) report to attach Natural
Language parameters in the bug report by
means of programming language with the
purpose of build in the source code. The
major contribution of this paper is to propose
Support Vector Machine (SVM) ranking
method which solves bug report problem
related to source files with the purpose of
permits the faultless integration of a different
type of features. In the experimentation work
wide-ranging evaluation and comparisons is
done by comparing the results to state-of-the-
art methods, it concludes that the proposed
FOFR system have achieves higher ranking
accuracy. Feature evaluation results are able
to be making use to choose a subset of
features in order to obtain an objective trade-
off among software system accuracy and
runtime complexity. In the scope of the
future work determination influence further
types of domain information are stack traces
presented by means of bug reports and the
file change history, as well as features
formerly used in fault calculation systems. In
addition plan to make use of the ranking
SVM by means of nonlinear kernels and
additionally assess the ranking approach on
software projects in other programming
languages. In scope the future work some
other methods have been implemented to
gather bug reports from the database with the
purpose is the make use of web-services
should be investigated and experimented in
order to facilitate the integration of SVM
model in the direction of existing bug
repositories. Ranking models, initiate a new
learning models in the direction of help
searches be able to be integrated to the SVM
toward enhance search features. For instance,
it is able to be added search during tags and
query reformulation. Moreover, other ranking
techniques might be helpful to enhance
search results.

REFERENCES
[1]. R. P. L. Buse and T. Zimmermann,
“Information needs for software development
analytics,” in Proc. Int. Conf. Softw. Eng.,
Piscataway, NJ, USA, 2012, pp. 987–996.
[2]. B. Bruegge and A. H. Dutoit, Object-
Oriented Software Engineering Using UML,
Patterns, and Java, 3rd ed. Upper Saddle
River, NJ, USA, Prentice-Hall, 2009
[3]. T. D. LaToza and B. A. Myers, “Hard-to-
answer questions about code,” in Proc. Eval.
Usability Programm. Lang. Tools, New
York, NY, USA, 2010, pp. 8:1–8:6.
[4]. A. Bacchelli and C. Bird, “Expectations,
outcomes, and challenges of modern code
review,” in Proc. Int. Conf. Softw. Eng.,
Piscataway, NJ, USA, 2013, pp. 712–721.
[5]. S. Breu, R. Premraj, J. Sillito, and T.
Zimmermann, “Information needs in bug
reports: Improving cooperation between
developers and users,” in Proc. ACM Conf.
Comput. Supported Cooperative Work, New
York, NY, USA, 2010, pp. 301–310.
[6]. C. D. Manning, P. Raghavan, and H.
Sch€utze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge
Univ. Press, 2008.
[7]. N. Bettenburg, S. Just, A. Schr€oter, C.
Weiss, R. Premraj, and T. Zimmermann,
“What makes a good bug report?” in Proc.
16th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., New York, NY, USA, 2008, pp.
308–318.
[8]. F. Rahman and P. Devanbu, “How, and
why, process metrics are better,” in Proc. Int.
Conf. Softw. Eng., Piscataway, NJ, USA,
2013, pp. 432–441.
[9]. P. Melville and V. Sindhwani,
“Recommender systems,” in Encyclopedia of
Machine Learning, C. Sammut and G. Webb,
Eds., New York, NY, USA: Springer, 2010,
pp. 829–838.
[10]. Anvik, J., Hiew, L., and Murphy, G. C.
(2005). Coping with an open bug repository.
In Proceedings of the 2005 OOPSLA
workshop on Eclipse technology eXchange,
pages 35–39, New York, NY, USA. ACM
Press.

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
[11]. Anvik, J., Hiew, L., and Murphy, G. C.
(2006). Who should fix this bug? In
Proceeding of the 28th International
Conference on Software Engineering
(ICSE’06), pages 361–370, New York, NY,
USA. ACM Press.
[12]. Song, Q., Shepperd, M. J., Cartwright,
M., and Mair, C. (2006). Software defect
association mining and defect correction
effort prediction. IEEE Transactions on
Software Engineering, 32(2), 69–82.
[13]. Ko, A. J., Myers, B. A., and Chau, D.
H. (2006). A linguistic analysis of how
people de-scribe software problems. In
Proceedings of the Visual Languages and
Human-Centric Computing (VLHCC’06),
pages 127–134, Washington, DC, USA.
IEEE Computer Science.
[14]. Sandusky, R. J., Gasser, L., and
Ripoche, G. (2004). Bug report networks:
Varieties, strategies, and impacts in a f/oss
development community. In Proceedings of
the 1st International Workshop on Mining
Software Repositories (MSR’04), pages 80–
84, University of Waterloo, Waterloo.
[15]. Podgurski, A., Leon, D., Francis, P.,
Masri, W., Minch, M., Sun, J., and Wang, B.
(2003). Automated support for classifying
software failure reports. In Proceedings of the
25th International Conference on Software
Engineering (ICSE’03), pages 465–475,
Washington, DC, USA. IEEE Computer
Society.
[16]. Hiew, L. (2006). Assisted Detection of
Duplicate Bug Reports. Master’s thesis, The
University of British Columbia.
[17]. Runeson, P., Alexandersson, M., and
Nyholm, O. (2007). Detection of duplicate
defect reports using natural language
processing. In Proceedings of the 29th

International Conference on Software
Engineering (ICSE’07), pp.499–510. IEEE
Computer Science Press.
[18]. Pohl, K., Böckle, G., and van der
Linden, F. (2005). Software Product Line
Engineering: Foundations, Principles, and
Techniques.
[19]. Wang, X., Zhang, L., Xie, T., Anvik, J.,
and Sun, J. (2008). An approach to detecting
duplicate bug reports using natural language

and execution information. In Proceedings of
the 13th International Conference on Software
Engineering (ICSE’08), pp. 461– 470. ACM
Press.
[20]. Canfora, G. and Cerulo, L. (2006).
Supporting change request assignment in
open source development. In Proceedings of
the 2006 ACM Symposium on Applied
Computing (SAC’06), pages 1767–1772.
ACM Press.
[21]. Anvik, J. and Murphy, G. C. (2007).
Determining implementation expertise from
bug reports. In Proceedings of the Fourth
International Workshop on Mining Software
Repositories (MSR’07). IEEE Computer
Society.
[22]. Sandusky, R. J., Gasser, L., and
Ripoche, G. (2004). Bug report networks:
Varieties, strategies, and impacts in a f/oss
development community. In Proceedings of
the 1st International Workshop on Mining
Software Repositories (MSR’04), pages 80–
84, University of Waterloo, Waterloo.
[23]. Antoniol, G., Penta, M. D., Gall, H.,
and Pinzger, M. (2005). Towards the
integration of versioning systems, bug reports
and source code meta-models. Electronic
Notes in Theoretical Computer Science,
127(3), 87–99.
[3]. Koponen, T. and Lintula, H. (2006). Are
the changes induced by the defect reports in
the open source software maintenance? In H.
R. Arabnia and H. Reza, editors, Proceedings
of the 2006 International Conference on
Software Engineering Research (SERP’06),
pp. 429–435. CSREA Press.
[4]. S. Rao and A. Kak, “Retrieval from
software libraries for bug localization: A
comparative study of generic and composite
text models,” in Proc. 8th Working Conf.
Mining Softw. Repositories, New York, NY,
USA, 2011, pp. 43–52.
[5]. J. Zhou, H. Zhang, and D. Lo, “Where
should the bugs be fixed? - more accurate
information retrieval-based bug localization
based on bug reports,” in Proc. Int. Conf.
Softw. Eng., Piscataway, NJ, USA, 2012 pp.
14–24.
[6]. F. Rahman and P. Devanbu, “How, and
why, process metrics are better,” in Proc. Int.

IJRSET JANUARY 2017 Volume 4, Issue 1 Pages: 1-16
Conf. Softw. Eng., Piscataway, NJ, USA,
2013, pp. 432–441.
[7]. R. Saha, M. Lease, S. Khurshid, and D.
Perry, “Improving bug localization using
structured information retrieval,” in Proc.
IEEE/ ACM 28th Int. Conf. Autom. Softw.
Eng., Nov. 2013, pp. 345–355.
[8]. L. Page, S. Brin, R. Motwani, and T.
Winograd, “The PageRank citation ranking:
Bringing order to the web,” Stanford
InfoLab, Stanford University, Tech. Rep.
1999-66, 1999.
[9]. J. M. Kleinberg, “Authoritative sources
in a hyperlinked environment,” J. ACM, vol.
46, no. 5, pp. 604–632, 1999.
[10]. S. Ahmad, A. Kalra, and H. Stephen,
“Estimating soil moisture using remote
sensing data: A machine learning approach,”
Advances in Water Resources, vol. 33, no. 1,
pp. 69–80, 2010.
[11]. S. Yin, X. Xie, J. Lam, K. C. Cheung,
and H. Gao, “An improved incremental
learning approach for kpi prognosis of
dynamic fuel cell system,” Cybernetics, IEEE
Transactions on, 2015.
[12]. D. S. Broomhead and D. Lowe, “Radial
basis functions, multi-variable functional
interpolation and adaptive networks,” DTIC
Document, Tech. Rep., 1988
[13]. J. Zhou, H. Zhang, and D. Lo, “Where
should the bugs be fixed? - more accurate
information retrieval-based bug localization
based on bug reports,” in Proc. Int. Conf.
Softw. Eng., Piscataway, NJ, USA, 2012 pp.
14–24.

