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Abstract:-
Acoustic problems in the

environment have gained attention due to
the tremendous growth of technology
Exposure to high decibels of sound proves
damaging to humans from both a physical
and a psychological aspect. The problem of
controlling the noise level in the
environment has been the focus of a
tremendous amount of research over the
years. This paper describes a study of
techniques for noise reduction which can be
applied at the input to standard receivers
trained on noise-free speech. In this review,
we have classified the existing noise
cancellation schemes and algorithms.
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1. INTRODUCTION
Noise can be defined as an unwanted

signal that interferes with the
communication or measurement of another
signal. A noise itself is an information-
bearing signal that conveys information
regarding the sources of the noise and the
environment in which it propagates. For
example, the noise from a car engine
conveys information regarding the state of
the engine and how smoothly it is running,
cosmic radiation provides information on

formation and structure of the universe and
background speech conversations in a
crowded venue can constitute interference
with the hearing of a desired conversation or
speech.
The types and sources of noise and
distortions are many and varied and include
(1) Electronic noise – such as the normal
noise and shot noise
(2) Acoustic noise - emanating from
moving , vibrating or colliding sources such
as revolving machines, moving vehicles,
keyboard clicks, wind and rain,
(3) Electromagnetic noise - that can
interfere with the transmission and reception
of voice, image and data over the radio-
frequency spectrum,
(4) Electrostatic noise - generated by
the presence of a voltage,
(5) communication channel distortion
and fading and
(6) Quantization noise - lost data packets
due to network congestion.
Signal distortion is the term often used to
describe a systematic undesirable change in
a signal and refers to changes in a signal due
to the non-ideal characteristics of the
communication channel, signal fading
reverberations, echo, multipath reflections
and missing samples. Noise and distortion
are the main factors that limit the capacity of
data transmission in telecommunication and
the accuracy of results in signal
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measurement systems. Therefore the
modeling and removal of the effects of noise
and distortions have been at the core of the
theory and practice of communications and
signal processing. Noise reduction and
distortion removal are important problems in
applications such as cellular mobile
communication, speech recognition, image
processing, medical signal processing, radar,
sonar, and in any application where the
desired signals cannot be isolated from noise
and distortion or observed in isolation[1].

2. INFLUENCE OF NOISE ON
SPEECH SIGNAL
APPLICATIONS

The performance of any speech
signal processing system is degraded in the
presence of noise (either additive or
convolution). This is due to the acoustic
mismatch between the speech features used
to train and test this system and the ability of
the acoustic models to describe the
corrupted speech. When processing the
speech signal, the quality of speech may be
at risk from various sources of interference
or distortions[2]. Typical sources of
interference are:
•  Background noise added to the speech
signal: for example – environmental noise or
engine noise when talking
on a mobile phone,
•  Unintended echo occurring in closed
spaces with bad acoustics,
•  Acoustic or audio feedback: it occurs in
two-way communication when the
microphone in the telephone captures the
actual speech of another person and the
speech of the first person reproduced from
loudspeakers, and sends them both back to
the first person,
•  Amplifier  noise:  an  amplifier  can
produce additional thermal noise, which
becomes noticeable during significant signal
amplifications,
• Quantization noise created in the
transformation of the analogue signal to
digital: the interference occurs during

sampling due to rounding up real values of
the analogue signal,
• Loss of signal quality, caused by coding
and speech compression. Due to numerous
sources of interference influencing the
speech signal, when designing the system
for speech signal processing, it is necessary
to apply the techniques of noise cancellation
and speech quality improvement[2].

3. LINEAR FILTERING OF
DIGITAL SIGNAL

Prior to processing, the analogue
signal must be transformed into the digital
form. The procedure of transforming the
analogue speech signal into a digital one
creates additional noise during sampling,
called quantization noise. However, already
at the sampling frequency of 8 kHz and 16-
bit sample resolution, the intensity of
quantization noise is neglectable  in
comparison  to  other  noise  sources
(microphone amplifier noise, environmental
noise). Once the analogue audio signal is
transformed into a digital one, different
techniques for noise cancellation and
increasing speech signal quality are applied.
The basic technique is linear filtering of the
digital signal. Linear filtering encompasses
signal processing in a time domain, reflected
in a change of source signal spectrum
content. The goal of filtering is to reduce
unwanted noise components from the speech
signal. Usually, linear digital filters consist
of two types:
1. Finitive Impulse Response filters –
FIR filters
2. Infinite Impulse Response filters –
IIR filters.
In FIR filters, the output signal y[t] of a
certain linear digital system is determined by
convoluting input signal x[t] with impulse
response h[t]:

Y [ t ] = x [ t] * h [ t ] (1)
Where, t is the time domain value. Along
with the time domain, digital filtering can
also be conducted in the frequency domain.
Digital filters in the frequency domain are
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divided into four main categories: low-pass,
band-pass, band-stop and high-pass [3].

4. NOISE CANCELLATION IN
FREQUENCY DOMAIN

The main procedure of filtering in
the frequency domain i.e.spectral filtering
consists of the input signal analysis, filtering
and synthesis of the filtered signal. The
input signal analysis consists of framing and
unitary transform from a time domain to a
transformdomain.

Figure 1: Spectral filtering procedure

The transform domain is most often
the frequency domain. This is followed by
filtering and return to the time domain, by
the inverse unitary transform with
unframing. Filtering primarily consists of
the reduction of those frequencies whose
power is below a certain threshold also
called noise floor. The main goal of unitary
transform is signal separation to a group of
separate components, where it is easier to
distinguish between the speech signal vector
and the noise signal vector. Moreover, with
the transform most of the speech signal
energy is compressed into a relatively small
number of coefficients, which facilitates
processing. The most frequently used
unitary transforms are the Discrete Fourier
Transform (DFT), Discrete Cosine

Transform (DCT) and the Karhunen-Loeve
Transform (KLT) [4].

5.  NOISE CANCELLATION
USING ADAPTIVE FILTERING

Adaptive Noise Canceller (ANC)
removes or suppresses noise from a signal
using adaptive filters that automatically
adjust their parameters .The ANC uses a
reference input derived from single or
multiple sensors located at points in the
noise field where the signal is weak or
undetectable. Adaptive filters then
determine the input
signal and decrease the noise level in the
system output. The parameters of the
adaptive filter can be adjusted automatically
and require almost neither prior signal
information nor noise characteristics.
However, the computational requirements of
adaptive filters are very high due to long
impulse responses, especially during
implementation on digital signal
processors.Convergence becomes very slow
if the adaptive filter receives a signal with
high spectral dynamic range  such as in non-
stationary environments and colored
background noise. In the last few decades,
numerous approaches have been proposed to
overcome these issues. For example, the
Wiener filter, Recursive-Least-Square (RLS)
algorithm, and the Kalman filter were
proposed to achieve the best performance of
adaptive filters. Apart from these
algorithms, the Least Mean Square (LMS)
algorithm is most commonly used because
of its robustness and simplicity. However,
the LMS suffers from significant
performance degradation with colored
interference signals.[1]. Other algorithms,
such as the Affine Projection algorithm
(APA), became alternative approaches to
track changes in background noise; but its
computational complexity increases with the
projection order, limiting its use in
acoustical environments.
An adaptive filtering system derived from
the LMS algorithm, called Adaptive Line



IJRSET 2015 SPL Volume 2, Issue 11 Pages: 34-41
Enhancer (ALE), was proposed as a solution
to the problems stated above. ALE is an
adaptive self-tuning filter capable
of,separating the periodic and stochastic
components in a signal. The ALE detects
extremely low-level sine waves in noise, and
may be applied in speech with noisy
environment. Furthermore, unlike ANCs,
ALEs do not require direct access to the
noise nor a way of isolating noise from the
useful signal. In literature, several ALE
methods have been proposed for acoustics
applications. These methods mainly focus
on improving the convergence rate of the
adaptive algorithms using modified filter
designs, realized as transversal Finite
Impulse Response (FIR), recursive Infinite
Impulse Response (IIR), lattice, and sub-
band filters.

Figure 2: Block diagram of adaptive noise
cancellation system

Figure 3: Block diagram of adaptive line
enhancer

It is shown that for this application of
adaptive noise cancellation, large filter
lengths are required to account for a highly
reverberant recording environment and that
there is a direct relation between filter mis-
adjustment and induced echo in the output
speech. The second reference noise signal is
adaptively filtered using the least mean
squares, LMS, and the lattice gradient
algorithms. These two approaches are
compared in terms of degree of noise power

reduction, algorithm convergence time, and
degree of speech enhancement [5].
The effectiveness of noise suppression
depends directly on the ability of the filter to
estimate the transfer function relating the
primary and reference noise channels. A
study of the filter length required to achieve
a desired noise reduction level in a hard-
walled room is presented. Results
demonstrating noise reduction in excess
10dB in an environment with 0dB signal
noise ratio [6].

6. SMOOTHING ALGORITHMS
In many experiments in physical

science, the true signal amplitudes (y-axis
values) change rather smoothly as a function
of the x-axis values, whereas many kinds of
noise are seen as rapid, random changes in
amplitude from point to point within the
signal. In the latter situation it may be useful
in some cases to attempt to reduce the noise
by a process called smoothing. In
smoothing, the data points of a signal are
modified so that individual points that are
higher than the immediately adjacent points
(presumably because of noise) are reduced,
and points that are lower than the adjacent
points are increased. This naturally leads to
a smoother signal. As long as the true
underlying signal is actually smooth, then
the true signal will not be much distorted by
smoothing, but the noise will be reduced.

Most smoothing algorithms are
based on the "shift and multiply" technique,
in which a group of adjacent points in the
original data are multiplied point-by-point
by a set of numbers (coefficients) that
defines the smooth shape, the products are
added up to become one point of smoothed
data, then the set of coefficients is shifted
one point down the original data and the
process is repeated. The simplest smoothing
algorithm is the rectangular or unweighted
sliding-average smooth; it simply replaces
each point in the signal with the average of
m adjacent points, where m is a positive
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integer called the smooth width. For
example, for a 3-point smooth (m = 3):

(2)
for j = 2 to n-1, where Sj the jth point in the
smoothed signal, Yj the jth point in the
original signal, and n is the total number of
points in the signal. Similar smooth
operations can be constructed for any
desired smooth width, m. Usually m is an
odd number. If the noise in the data is
"white noise" (that is, evenly distributed
over all frequencies) and its standard
deviation is s, then the standard deviation of
the noise remaining in the signal after the
first pass of an unweighted sliding-average
smooth will be approximately s over the
square root of m (s/sqrt(m)), where m is the
smooth width.
The triangular smooth is like the rectangular
smooth, above, except that it implements a
weighted smoothing function. For a 5-point
smooth (m = 5):

(3)
for j = 3 to n-2, and similarly for other
smooth widths .It is often useful to apply a
smoothing operation more than once, that is,
to smooth an already smoothed signal, in
order to build longer and more complicated
smooths. For example, the 5-point triangular
smooth above is equivalent to two passes of
a 3-point rectangular smooth. Three passes
of a 3-point rectangular smooth result in a 7-
point "pseudo-Gaussian" or haystack
smooth, for which the coefficients are in the
ratio 1 3 6 7 6 3 1. The general rule is that n
passes of a w-width smooth results in a
combined smooth width of n*w-n+1. For
example, 3 passes of a 17-point smooth
results in a 49-point smooth. These
multipass smooths are more effective at
reducing high-frequency noise in the signal
than a rectangular smooth.In all these
smooths, the width of the smooth m is

chosen to be an odd integer, so that the
smooth coefficients are symmetrically
balanced around the central point, which is
important because it preserves the x-axis
position of peaks and other features in the
signal. (This is especially critical for
analytical and spectroscopic applications
because the peak positions are often
important measurement objectives).Note
that we are assuming here that the x-axis
intervals of the signal is uniform, that is, that
the difference between the x-axis values of
adjacent points is the same throughout the
signal. This is also assumed in many of the
other signal-processing techniques described
in this essay, and it is a very common (but
not necessary) characteristic of signals that
are acquired by automated and computerized
equipment.
Noise reduction Smoothing usually reduces
the noise in a signal. If the noise is "white"
(that is, evenly distributed over all
frequencies) and its standard deviation is s,
then the standard deviation of the noise
remaining in the signal after one pass of a
triangular smooth will be approximately
s*0.8/sqrt(m), where m is the smooth width.
Smoothing operations can be applied more

than once: that is, a previously-smoothed
signal can be smoothed again. In some cases
this can be useful if there is a great deal of
high-frequency noise in the signal.
However, the noise reduction for white
noise is less in each successive smooth. For
example, three passes of a rectangular
smooth reduces white noise by a factor of
approximately s*0.7/sqrt (m), only a slight
improvement over two passes.
The frequency distribution of noise,
designated by noise color, substantially
effects the ability of smoothing to reduce
noise. The Matlab/Octave function
“NoiseColorTest.m” compares the effect of
a 100-point boxcar (unweighted sliding
average) smooth on the standard deviation
of white, pink, and blue noise, all of which
have an original unsmoothed standard
deviation of 1.0. Because smoothing is a
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low-pass filter process, it effects low
frequency (pink) noise less, and high-
frequency (blue) noise more, than white
noise.

Original unsmoothed noise 1

Smoothed white noise 0.1

Smoothed pink noise 0.55

Smoothed blue noise 0.01

End effects and the lost points problem.
Note in the equations above that the 3-point
rectangular smooth is defined only for j = 2
to n-1. There is not enough data in the signal
to define a complete 3-point smooth for the
first point in the signal (j = 1) or for the last
point (j = n) , because there are no data
points before the first point or after the last
point. (Similarly, a 5-point smooth is
defined only for j = 3 to n-2, and therefore a
smooth cannot be calculated for the first two
points or for the last two points). In general,
for an m-width smooth, there will be (m-1)/2
points at the beginning of the signal and (m-
1)/2 points at the end of the signal for which
a complete m-width smooth cannot be
calculated. What to do? There are two
approaches. One is to accept the loss of
points and trim off those points or replace
them with zeros in the smooth signal. (That's
the approach taken in most of the figures in
this paper). The other approach is to use
progressively smaller smooths at the ends of
the signal, for example to use 2, 3, 5, 7...
point smooths for signal points 1, 2, 3,and
4..., and for points n, n-1, n-2, n-3...,
respectively. The later approach may be
preferable if the edges of the signal contain
critical information, but it increases
execution time. The fast smooth function
discussed below can utilize either of these
two methods.

Examples of smoothing. A simple example
of smoothing is shown in Figure 4. The left
half of this signal is a noisy peak. The right
half is the same peak after undergoing a

triangular smoothing algorithm. The noise is
greatly reduced while the peak itself is
hardly changed. Smoothing increases the
signal-to-noise ratio and allows the signal
characteristics (peak position, height, width,
area, etc.) to be measured more accurately
by visual inspection.

Figure 4. The left half of this signal is a
noisy peak.

The right half is the same peak after
undergoing a smoothing algorithm. The
noise is greatly reduced while the peak itself
is hardly changed, making it easier to
measure the peak position, height, and width
directly by graphical or visual estimation
(but it does not improve measurements made
by least-squares methods.
The larger the smooth width, the greater the
noise reduction, but also the greater the
possibility that the signal will be distorted
by the smoothing operation. The optimum
choice of smooth width depends upon the
width and shape of the signal and the
digitization interval. For peak-type signals,
the critical factor is the smoothing ratio, the
ratio between the smooth width m and the
number of points in the half-width of the
peak. In general, increasing the smoothing
ratio improves the signal-to-noise ratio but
causes a reduction in amplitude and in
increase in the bandwidth of the peak.

CONCLUSION
The performance of any speech

signal processing system is degraded in the
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presence of noise (either additive or
convolution). This is due to the acoustic
mismatch between the speech features used
to train and test this system and the ability of
the acoustic models to describe the
corrupted speech. Various techniques for
filtering the noise from a speech waveform
has been studied. Most of these technique is
based upon the concept tof adaptive filtering
and takes advantage of the quasi-periodic
nature of the speech waveform to supply a
reference signal to the adaptive filter.
Preliminary tests by authors indicate that the
technique appears to improve the quality of
noise speech and slightly reduce granular
quantization noise. This technique also
appears to improve the performance of the
linear prediction analysis and synthesis of
noisy speech. It is also found from studies
that, for the lower order FIR adaptive filter,
RLS algorithm produce highest SNR and it
is superior to LMS in its performance. But
LMS is converging faster that RLS for the
Finite Impulse response (FIR) filter Taps.
Optimum Mu (LMS) and Lambda (RLS)
values have been obtained by fixing the FIR
Tap weight. Acoustic noise cancellation
ANC is best suited to remove ambient noise.
The traditional wideband ANC algorithms
work best in the lower frequency bands and
their performance deteriorates rapidly as the
bandwidth and the center frequency of the
noise increases. Most noise sources tend to
be broadband in nature and while a large
portion of the energy is concentrated in the
lower frequencies, they also tend to have
significant high frequency components.
Further, as the ANC system is combined
with other communication and sound
systems, it is necessary to have a frequency
dependent noise cancellation system to
avoid adversely affecting the desired
signal.The major drawback of traditional
single band ANC algorithms is that the
performance deteriorates rapidly as the
frequency of the noise increases. However,
noise in real world conditions tends to be
broadband with significant high frequency

components. Adaptive filtering has been
used for speech denoising in the time
domain. During the last decade, wavelet
transform has been developed for speech
enhancement. Spectral analysis of non-
stationary signals can be performed by
employing techniques such as the Adaptive
filters like LMS, NLMS, STFT and the
Wavelet transform (WT), which use
predefined basis functions. Empirical mode
decomposition (EMD) performs very well in
such environments. Also, Acoustic noise
with energy greater or equal to the speech
can be suppressed by adaptively filtering a
separately recorded correlated version of the
noise signal and subtracting it from the
speech waveform. It is shown that for this
application of adaptive noise cancellation,
large filter lengths are required to account
for a highly reverberant recording
environment and that there is a direct
relation between filter misadjustment and
induced echo in the output speech. The
second reference noise signal is adaptively
filtered using the least mean squares, LMS,
and the lattice gradient algorithms. These
two approaches are compared in terms of
degree of noise power reduction, algorithm
convergence time, and degree of speech
enhancement. Both methods were shown to
reduce ambient noise power by at least 20
dB with minimal speech distortion and thus
to be potentially powerful as noise
suppression pre-processors for voice
communication in severe noise environment.
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