
IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27

AN EFFICIENT DEDUPLICATION PROCESS OF LOAD BALANCING
METHOD IN CLOUD STORAGE

1 R. Shalini, 2 P. Shanthi
1 M.Phil Research Scholar, 2 Assistant Professor

1, 2 SRI JAYENDRA SARASWATHY MAHA VIDYALAYA COLLEGE OF ARTS AND SCIENCE,
1, 2 Coimbatore, Tamilnadu, India

__
ABSTRACT: In the real Cloud Computing Environment, the centralized cloud management
was developed an efficiency and cost inflection point, and offers simple offsite storage for
disaster recovery, which is always a critical concern for data backup. To prepare one alternative,
Cloud backup service is a best choice which is cost-effective and provides protection to personal
computing devices or cloud storage. The proposed method will focus on the following factors,
user provisioning cost, security to storage, load balancing, and avoid redundancy. For providing
these factors, the functions to perform are de-duplication process, chunking of data, hash
function, load balancing and Application aware. The de-duplication process performs the
functions local de-duplication and global de-duplication to check the local cloud storage and the
global cloud storage, which gives more effectiveness and latency of de-duplication. An
intelligent data chunking method and Hash functions are performed, which splits the files into
the chunks of data and apply hash functions to those chunks of data, which results in minimal
computational overhead and high security to the cloud storage. Load balancing function is used
to balance the load while storing the files into the resources of cloud.

Keywords: [Deduplication, chunking, Back-up.]
__

1. INTRODUCTION
Cloud computing is the new emerging

trends in the new generation technology.
Every user has huge amount of data to share to
store in a quickly available secured place. The
concept of deduplication is arrived here to
efficiently utilize the bandwidth and disk
usage on cloud computing. To avoid the
duplication copies of the same data on cloud
may cause lose of time, bandwidth utilization
and space.

Cloud computing is internet-based, a network
of remote servers connected over the Internet
to store, share, manipulate, retrieve and
processing of data, instead of a local server or
personal computer[1]. The benefit of cloud
computing are enormous. It enables us to
work from anywhere. The most important
thing is that customer doesn’t need to buy the
resource for data storage. When it comes to
Security, there is a possibility where a
malicious user can penetrate the cloud by

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
impersonating a legalize user, there by
affecting the entire cloud thus infecting many
customers who are sharing the infected cloud.
There is also big problem, where the duplicate
copies may upload to the cloud, which will
lead to waste of band width and disk usage.
To improve this problem there should be a
good degree of encryption provided, that only
the customer should be able to access the data
and not the legitimate User. Yan Kit Li et
al.[1] shown To formally solve the problem of
authorized data deduplication. Data
deduplication is a data compression technique
for removing duplicate copies of identical
data, and it is used in cloud storage to save
bandwidth and to reduce the amount storage
space. The technique is utilized to enhance the
storage use and can likewise be applied to
network data exchange to reduce the amount
of bytes that must be sent. Keeping multiple
data copies with the identical content, de-
duplication removes redundant data by
keeping only one copy and referring other
identical data to that copy. De-duplication
occurs either at block level or at file level. In
file level de-duplication, it removed duplicate
copies of the identical file. Deduplication can
also take place in the block level that
eliminates duplicate blocks of data that is
occurred in non identical files [2].

Figure 1-Architecture of Authorized deduplication

2. LITERATURE SURVEY
1. A Hybrid Cloud Approach for Secure
Authorized Deduplication (G.Prashanthi et
al, 2015)
From this paper, we referred- Several new
deduplication constructions supporting
authorized duplicate check in hybrid cloud
architecture, in which the duplicate-check
tokens of files are generated by the private
cloud server with private keys. Security
analysis demonstrates that our schemes are
secure in terms of insider and outsider attacks
specified in the proposed security model. As a
proof of concept, we implemented a prototype
of our proposed authorized duplicate check
scheme and conduct tested experiments on our
prototype. We showed that our authorized
duplicate check scheme incurs minimal
overhead compared to convergent encryption
and network transfer.

2. A Hybrid Cloud Approach for Secure
Authorized Deduplication (Gaurav
Kakariya et al, 2014)

`From this paper, we referred- Cloud
computing has reached a maturity that leads it
into a productive phase. This means that most
of the main issues with cloud computing have
been addressed to a degree that clouds have
become interesting for full commercial
exploitation. This, however, does not mean
that all the problems listed above have
actually been solved, only that the according
risks can be tolerated to a certain degree.
Cloud computing is therefore still as much a
research topic, as it is a market offering. For
better confidentiality and security in cloud
computing, we have proposed new
deduplication constructions supporting
authorized duplicate check in hybrid cloud
architecture, in which the duplicate-check
tokens of files are generated by the private

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
cloud server with private keys. The proposed
system includes proof of data owner so it will
help to implement better security issues in
cloud computing.

3. A Hybrid Cloud Approach for Secure
Authorized Deduplication (Jin Li et al,
2010)

From this paper, we referred-In this
paper, the notion of authorized data
deduplication was proposed to protect the data
security by including differential privileges of
users in the duplicate check. We also
presented several new deduplication
constructions supporting authorized duplicate
check in hybrid cloud architecture, in which
the duplicate-check tokens of files are
generated by the private cloud server with
private keys. Security analysis demonstrates
that our schemes are secure in terms of insider
and outsider attacks specified in the proposed
security model. As a proof of concept, we
implemented a prototype of our proposed
authorized duplicate check scheme and
conduct testbed experiments on our prototype.
We showed that our authorized duplicate
check scheme incurs minimal overhead
compared to convergent encryption and
network transfer.

4. Secure Deduplication And Data Security
With Efficient and Reliable CEKM
(N.O.Agrawal et al, 2014) From this paper,
we referred- The basic idea is that we can
limit the damage of stolen data if we decrease
the value of that stolen information to the
attacker. We can achieve this through a
‘preventive’ disinformation attack. We posit
that secure deduplication services can be
implement given additional security features
insider attacker on Deduplication and outsider
attacker by using the detection of masquerade

activity. The confusion of the attacker and the
additional costs incurred to distinguish real
from bogus information, and the deterrence
effect which, although hard to measure, plays
a significant role in preventing masquerade
activity by risk-averse attackers. We posit that
the combination of these security features will
provide unprecedented levels of security for
the deduplication.

5. Implementation of Hybrid Cloud
Approach for Secure Authorized
Deduplication (Jadapalli Nandini et al,
2015)

From this paper we referred- The
notion of authorized data de-duplication was
proposed to protect the data security by
including differential privileges of users in the
duplicate check. We also presented several
new de-duplication constructions supporting
authorized duplicate check in hybrid cloud
architecture, in which the duplicate-check
tokens of files are generated by the private
cloud server with private keys. Security
analysis demonstrates that our schemes are
secure in terms of insider and outsider attacks
specified in the proposed security model. As a
proof of concept, we implemented a prototype
of our proposed authorized duplicate check
scheme and conduct test-bed experiments on
our prototype. We showed that our authorized
duplicate check scheme incurs minimal
overhead compared to convergent encryption
and network transfer.

6. A Hybrid Cloud Approach for Secure
Authorized Deduplication (Jagadish et al,
2012)
From this paper, we referred- In this project,
the notion of authorized data deduplication
was proposed to protect the data security by
including differential privileges of users in the

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
duplicate check. In this project, we perform
several new deduplication constructions
supporting authorized duplicate check in
hybrid cloud architecture, in which the
duplicate-check tokens of files are generated
by the private cloud server with private keys.
As a proof of concept in this project, we
implement a prototype of our proposed
authorized duplicate check scheme and
conduct testbed experiments on our prototype.
From this project, we show that our authorized
duplicate check scheme incurs minimal
overhead compared to convergent encryption
and network transfer.

7. A Study on Authorized Deduplication
Techniques in Cloud Computing (Bhushan
Choudhary et al, 2014)
From this paper, we referred- The thought of
authorized information deduplication was
proposed to ensure the information security by
counting differential benefits of clients in the
duplicate copy check. The presentation of a
few new deduplication developments
supporting authorized duplicate copy in hybrid
cloud architecture, in that the duplicate check
tokens of documents are produced by the
private cloud server having private keys.
Security check exhibits that the methods are
secure regarding insider and outsider assaults
detailed in the proposed security model. As an
issue verification of idea, the developed model
of the proposed authorized duplicate copy
check method and tested the model. That
showed the authorized duplicate copy check
method experience minimum overhead
comparing convergent encryption and data
transfer.

8. Secure Authorized Deduplication on
Cloud using Hybrid Cloud Approach
(Ankita Mahajan) From this paper, we

referred- We also presented several new
deduplication constructions supporting
authorized duplicate check in hybrid cloud
architecture, in which the duplicate-check
tokens of files are generated by the private
cloud server with private keys. Security
analysis demonstrates that our schemes are
secure in terms of insider and outsider attacks
specified in the proposed security model. As a
proof of concept, we implemented a prototype
of our proposed authorized duplicate check
scheme and conduct testbed experiments on
our prototype. We showed that our authorized
duplicate check scheme incurs minimal
overhead compared to convergent encryption
and network transfer.

9. Secured Authorized Deduplication based
Hybrid Cloud (Rajashree Shivshankar,
2014)
From this paper, we referred- Data
deduplication is an important technique for
eliminating redundant data.Instead of taking
no. of same files, it stores only single copy of
the file. In most organizations, storage system
contains many pieces of duplicate data. . For
example, the same file may be saved in
several different places by different users.
Deduplication eliminates these extra copies by
saving just one copy of the data and replacing
the other copies with pointers that lead back to
the original copy. It is data compression
technique for improving the bandwidth
efficiency and storage utilization. Data
deduplication most widely used in cloud
computing. It makes data management
scalable and storage problem in cloud
computing. Data deduplication protects the
confidentiality of sensitive data. Data
deduplication works with convergent
encryption technique to encrypt the data
before uploading. . Companies frequently use

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
deduplication in backup and disaster recovery
applications.

3. TECHNOLOGY
CLASSIFICATION OF
DEDUPLICATION
Post-process deduplication (PPD):
It is also known as asynchronous
deduplication or offline deduplication. It
involves the removal of redundant data after a
backup is completed and data has already been
written to storage. The benefit of this method
is that backup data is straightforward and
takes very less time because the calculations
of hash values and lookup takes place only
after all of the data is stored.
In-line deduplication:
This process involves the calculation of hash
values as the data enters the system. The
benefit of this process over post-process is that
it will take very less space because the
calculation of hash values and the lookup
process is completed before the data enters the
database. So only one instance of a particular
data is stores and the duplicate data is
reference to the data present in the server.
Source deduplication:
This type of deduplication is the best suited to
use at remote offices for backup to the cloud.
The deduplication takes place typically within
the system by regularly scanning new files
creating hashes and compares them to the
hashes of existing files. It offers a number of
benefits, including the reduction of bandwidth
and the amount of data that has to be sent to
the cloud server.[3].
Target deduplication:
This is best suited for the use in the data
center for the reduction of massive data sets.
In this case, the client is unmodified and is not
aware of any deduplication. Target
deduplication requires that the target backup

server or dedicated Hardware target appliance
handles all of the deduplication. This process
requires more network resources compared to
source deduplication because the original data,
with all its redundancy, must go over the
network.
File Level and Sub-file Level
Deduplication:
The full file level duplicates easily can be
eliminated by calculating single checksum of
complete file data and comparing it against
existing checksums of the already backed up
files. This method of deduplication is simple
and fast, but the extent of deduplication is
less, as this process does not address the
problem of duplicate files or data-sets. The
sub-file level deduplication breaks the file into
smaller fixed or variable size blocks, and uses
hash based algorithm to compare these blocks
and find similar blocks.
Fixed-Length Blocks:
A fixed-length block approach divides the
files into fixed size length blocks and uses a
simple checksum-based approach (MD5/SHA
etc.) to find the duplicates. This process has a
limited effectiveness. The reason for this is
that the primary opportunity for data reduction
is in finding duplicate blocks in two
transmitted datasets that are mostly- but not
completely of same data segment.
Variable Length Data Segment technology:
This technique divides the data stream into
variable-length data segments using a
methodology that can find the same block
boundaries in different locations and contexts.
This allows the boundaries to float within the
data stream so that changes in one part of the
dataset have little or no impact on the
boundaries in other location of the dataset.

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27

Figure2- DEDUPLICATION PROCESS

4. ANALYSES OF CHUNKING
ALGORITHMS

Data De-duplication can be performed
in two different ways, either Hash based
where the fingerprint of the chunk is used in
de-duplication of data or Content based, where
the de-duplication is done by byte by byte
comparison. Following section gives a brief
study on such algorithms.[4,5,6]

4.1 Hash Based Chunking
Hash Based De-duplication involves

using a hashing algorithm to identify the
chunks of the data. The hash algorithm takes
the chunk as the input and produces a
cryptographic hash value for the chunk. The
most commonly used hashing algorithms are
SHA-1 [22] and MD-5[7]. The hash value is
known as the fingerprint of the chunk. The
chunks can either be of fixed length or
variable length. If the fingerprint already
exists in the chunk index, then this chunk is
termed as duplicate and it is not stored into the
disk, else if the chunk was not found in the
chunk index, then this unique chunk is stored
into the disk. Following are the two ways of
chunking the data file.

4.2 Fixed length or Fixed blocks Chunking
Here the evaluation of data includes a fixed
reference window used to look at segments of
data during de-duplication process. It provides
a fixed block boundary e.g. 4KB, or 8KB.
Fixed length chunking is used most often
when general purpose hardware is involved
for carrying de-duplication. Nevertheless the
fixed length chunking algorithm achieves
significantly very less reduction than a
variable length approach. The reason is
because the duplicates are usually found
between any two transmitting data set or any
two consequent backup data sets, the two data
sets with a small amount of difference are
likely to have very few identical chunks.
Advantage is that it requires the minimum
CPU overhead, and it is fast and simple.
Because of the block size or block boundaries
being fixed, it results in boundary shifting
problem, where if the data in the file is shifted,
then it affects all the data following it, and the
duplicates are not detected as a result of this.

Figure 3- Fixed Length Chunking

Figure 3 illustrates the boundary shifting
problem due to fixed size chunking, where
chunks A, B, C and D are similar to chunks E,
F, G and chunks H respectively. But due to the
addition of some text in the beginning before
the chunk E affects all the chunks following it
and the duplicates are not detected due to the
fixed window size.

4.3 Variable length or Variable block
Chunking
Here the evaluation of data uses a variable
length window to find duplicate data in stream

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
or value of data processed. It divides the data
stream into variable length data segments
using a data dependent methodology that can
find the same data block boundaries in
different locations and contexts. Here the
window size varies based on what algorithm is
being used with average window size as 4KB.
The most frequently used variable length
chunking algorithm is TTTD Figure 2
illustrates the variable length chunking. Even
after adding some data before the chunk E,
neither the chunk E nor the chunks following
it are affected. This way of creating variable
length blocks makes the data to float inside
the data file and helps in finding maximum
number of duplicates[8].

Figure 4- Variable Length Chunking

T. T. Thwel et.al. [2] have used the TTTD
algorithm for chunking the data files. This
paper has clearly specified about the
procedure involved in the variable length
chunking. It uses a minimum size and
maximum size threshold for setting the
maximum and minimum values of every
chunk. Two divisor values namely main
divisor and second divisor are also used for
finding the boundary of the chunk. Main
divisor finds the breakpoint and if it
unsuccessful in doing so, then the backup
breakpoint found using the second divisor acts
as the breakpoint. But TTTD has a limitation
due to the second divisor which mostly
produces breakpoints which are near to the
maximum threshold. This results in larger
sized chunks where a lot of time is wasted in
performing unwanted calculations and
comparisons [9,10].

T. S. Moh et.al. [1] has proposed TTTD-S
algorithm to eliminate the disadvantage of
TTTD algorithm. It uses a new parameter
called average threshold which is the average
of maximum and minimum threshold. When
this algorithm reaches this parameter, the
original values of main divisor and second
divisor is halved. These values are switched
back to the original values once the breakpoint
is found. This avoids unnecessary
comparisons and calculations.

4.4 Content or Application Aware Based
Chunking

F. Douglis et.al. [5] used the content
aware de-duplication which is performed in a
different way. Here the data is considered as
an object. It takes the objects and compares it
with the other objects for finding the
duplicates in an efficient manner. Here the
data is divided into large data segments and by
using the knowledge of the content of the data,
similar segments are determined and only the
changed bytes between the objects are saved.
This is a byte level comparison.[11,12]

Figure 5- SYSTEM ARCHITECTURE OF
CHUNKING ALGORITHMS

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
or value of data processed. It divides the data
stream into variable length data segments
using a data dependent methodology that can
find the same data block boundaries in
different locations and contexts. Here the
window size varies based on what algorithm is
being used with average window size as 4KB.
The most frequently used variable length
chunking algorithm is TTTD Figure 2
illustrates the variable length chunking. Even
after adding some data before the chunk E,
neither the chunk E nor the chunks following
it are affected. This way of creating variable
length blocks makes the data to float inside
the data file and helps in finding maximum
number of duplicates[8].

Figure 4- Variable Length Chunking

T. T. Thwel et.al. [2] have used the TTTD
algorithm for chunking the data files. This
paper has clearly specified about the
procedure involved in the variable length
chunking. It uses a minimum size and
maximum size threshold for setting the
maximum and minimum values of every
chunk. Two divisor values namely main
divisor and second divisor are also used for
finding the boundary of the chunk. Main
divisor finds the breakpoint and if it
unsuccessful in doing so, then the backup
breakpoint found using the second divisor acts
as the breakpoint. But TTTD has a limitation
due to the second divisor which mostly
produces breakpoints which are near to the
maximum threshold. This results in larger
sized chunks where a lot of time is wasted in
performing unwanted calculations and
comparisons [9,10].

T. S. Moh et.al. [1] has proposed TTTD-S
algorithm to eliminate the disadvantage of
TTTD algorithm. It uses a new parameter
called average threshold which is the average
of maximum and minimum threshold. When
this algorithm reaches this parameter, the
original values of main divisor and second
divisor is halved. These values are switched
back to the original values once the breakpoint
is found. This avoids unnecessary
comparisons and calculations.

4.4 Content or Application Aware Based
Chunking

F. Douglis et.al. [5] used the content
aware de-duplication which is performed in a
different way. Here the data is considered as
an object. It takes the objects and compares it
with the other objects for finding the
duplicates in an efficient manner. Here the
data is divided into large data segments and by
using the knowledge of the content of the data,
similar segments are determined and only the
changed bytes between the objects are saved.
This is a byte level comparison.[11,12]

Figure 5- SYSTEM ARCHITECTURE OF
CHUNKING ALGORITHMS

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
or value of data processed. It divides the data
stream into variable length data segments
using a data dependent methodology that can
find the same data block boundaries in
different locations and contexts. Here the
window size varies based on what algorithm is
being used with average window size as 4KB.
The most frequently used variable length
chunking algorithm is TTTD Figure 2
illustrates the variable length chunking. Even
after adding some data before the chunk E,
neither the chunk E nor the chunks following
it are affected. This way of creating variable
length blocks makes the data to float inside
the data file and helps in finding maximum
number of duplicates[8].

Figure 4- Variable Length Chunking

T. T. Thwel et.al. [2] have used the TTTD
algorithm for chunking the data files. This
paper has clearly specified about the
procedure involved in the variable length
chunking. It uses a minimum size and
maximum size threshold for setting the
maximum and minimum values of every
chunk. Two divisor values namely main
divisor and second divisor are also used for
finding the boundary of the chunk. Main
divisor finds the breakpoint and if it
unsuccessful in doing so, then the backup
breakpoint found using the second divisor acts
as the breakpoint. But TTTD has a limitation
due to the second divisor which mostly
produces breakpoints which are near to the
maximum threshold. This results in larger
sized chunks where a lot of time is wasted in
performing unwanted calculations and
comparisons [9,10].

T. S. Moh et.al. [1] has proposed TTTD-S
algorithm to eliminate the disadvantage of
TTTD algorithm. It uses a new parameter
called average threshold which is the average
of maximum and minimum threshold. When
this algorithm reaches this parameter, the
original values of main divisor and second
divisor is halved. These values are switched
back to the original values once the breakpoint
is found. This avoids unnecessary
comparisons and calculations.

4.4 Content or Application Aware Based
Chunking

F. Douglis et.al. [5] used the content
aware de-duplication which is performed in a
different way. Here the data is considered as
an object. It takes the objects and compares it
with the other objects for finding the
duplicates in an efficient manner. Here the
data is divided into large data segments and by
using the knowledge of the content of the data,
similar segments are determined and only the
changed bytes between the objects are saved.
This is a byte level comparison.[11,12]

Figure 5- SYSTEM ARCHITECTURE OF
CHUNKING ALGORITHMS

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
5. LOAD BALANCING FUNCTION
IN DEDUPLICATION

The proposed method will focus on the
following factors, user provisioning cost,
security to storage, load balancing, and avoid
redundancy. For providing these factors, the
functions to perform are de-duplication
process, chunking of data, hash function, load
balancing and Application aware[13]. The de-
duplication process performs the functions
local de-duplication and global de-duplication
to check the local cloud storage and the global
cloud storage, which gives more effectiveness
and latency of de-duplication. An intelligent
data chunking method and Hash functions are
performed, which splits the files into the
chunks of data and apply hash functions to
those chunks of data, which results in minimal
computational overhead and high security to
the cloud storage. Load balancing function is
used to balance the load while storing the files
into the resources of cloud. The main
contributions of Deduplication is

1. Chunking of data with the file type
2. Hash function based on the file

priorities
3. De-Duplication process to avoid

duplicate files
4. Load Balancing to reduce overhead

The goal of this is to provide a scheme for
balancing theLoad in the personal cloud
computing which is categorizedinto several
number of chunks which, for every cloud
serveri, returns an estimate ni of the total
number of chunk files forEach cloud server,
so that each ni is within a constant factorof n,
with high probability.[14,15,16] A DHT
network is an over layon the application level.
The logical proximity abstraction derived
from the DHT does not necessarily match the
physical proximity information in reality. That
means a message traveling between two

neighbours in a DHT overlay may travel along
physical distance through several physical
network links. In the load balancing
algorithm, light nodes n may rejoin as a
successor of are heavy node j. Then, the
requested chunks migrated from j to i need to
traverse several physical network links, thus
generating Considerable network traffic and
consuming significant network resources (i.e.,
the buffers in the switches on a
communication path for transmitting a file
chunk from a source node to a destination
node).[17] We improve our proposal by
exploiting physical network locality.
Basically, instead of collecting as in vector per
algorithm i around, each light node i gathers
NV vectors. Each vector is built using the
method introduced previously. From the NV
vectors, the light node I seeks NV heavy
nodes by invokingAlgorithm1 (i.e., SEEK) for
each vector and then selects the physically
closest heavy node based on the message
round-trip delay.The pseudocodes for all
types of intervals are depicted[18,19,20]
Pseudocode 1: Load balancing using
distributed hashtable (DHT)
Short the number of files in the chunk with
number of user
State:=staying
If(predecessor is short) // number of files and
task is short
With probability ½ change state to leaving
If (state =leaving and predecessor .state
=staying)
{
P:=random(0.1)
P:=the node responsible for P
Contact consecutively the node P and its
6.log(u.ni)
successor on the ring
If (a node R accepts)
Leave and rejoin in the middle of R
}

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
At any time, if any node contacts reject
imbalanced Middle At any time, if any node
contacts reject imbalanced Long Wait for
contacts Id any node contacts accept the
current load task and balanced In distributed
file systems (e.g., Google GFS and
HadoopHDFS), a constant number of replicas
for each file chunk are maintained in distinct
nodes to improve file availability with respect
to node failures and departures. Our current
load balancing algorithm does not treat
replicas distinctly. It is unlikely that two or
more replicas are placed in an identical node
because of the random nature of our load
rebalancing algorithm. More specifically, each
under loaded node samples a number of
nodes, each selected with a probability of 1/n,
to share their loads (where n is the
totalnumber of storage nodes).

CONCLUSION
This paper discusses the information

about data deduplication for the cloud based
systems. It includes the methods that are used
to achieve cost effective storage and effective
bandwidth usage by deduplication. The core
concept involves eliminating the duplicate
copies of the repeated data by using hashing
algorithms . However, reliability and speed
are at stake. However, data deduplication is
the most crucial element for improving
efficiency of the cloud system. An intelligent
data chunking method and Hash functions are
performed, which splits the files into the
chunks of data and apply hash functions to
those chunks of data, which results in minimal
computational overhead and high security to
the cloud storage. Therefore Load balancing
function is used to balance the load while
storing the files into the resources of cloud.

REFERENCES
[1]. Jin Li, Xiaofeng Chen, Xinyi Huang,
Shaohua Tang and Yang Xiang, “Secure

Distributed Deduplication Systems with
Improved Reliability” 0018-9340 (c) 2015
IEEE.

[2]. Jingwei Li, Jin Li, Dongqing Xie and
Zhang Cai, “Secure Auditing and
Deduplicating Data in Cloud
[10].1109/TC.2015. 2389960, IEEE 2015
Transactions on Computers.

[3]. Prof. N.B. Kadu, Mr. Amit Tickoo,
Mr.Saurabh I. Patil, Mr. Ganesh B. Divte, “A
Hybrid Cloud

Approach for Secure Authorized
Deduplication” International Journal of
Scientific and Research Publications, April
2015

[4].“A SURVEY: DEDUPLICATION
ONTOLOGIES, International Journal of
Computer Applications (0975 – 8887) Volume
109 – No. 1, January 2015.

[5]. Yufeng Wang, Chiu C Tan, Ningfang Mi
“Using Elasticity to Improve Inline Data
Deduplication Storage Systems” 2014
[6]. Waraporn Leesakul, Paul Townend, Jie
Xu, “Dynamic Data Deduplication in Cloud
Storage” 2014 IEEE 8th International
Symposium.

[7]. Jin Li, Xiaofeng Chen, Mingqiang Li, and
Wenjing Lou. “Secure De-duplication with
Efficient and Reliable Convergent Key
Management”. In IEEE Transactions On
Parallel And Distributed Systems, Vol. 25,
No. 6, June 2014.

[8]. Yinjin Fu, Hong Jiang, Nong Xiao, Lei
Tian, Fang Liu, and Lei Xu,” Application-
Aware Local-Global Source Deduplication for
Cloud Backup Services of Personal Storage”
IEEE ,May 2014

[9]. Quanlu Zhang, Shenglong Li, Zhenhua
Liy, Yuanjian Xingz, Zhi Yang, and Yafei
Dai, “CHARM: A Cost-efficient Multi-cloud
Data Hosting Scheme with High Availability”
10.1109, IEEE 2014 Transactions on Cloud
Computing
[10] Chazelle, B., Kilian, J., Rubinfled, R. and
Tal, A. 2004. The Bloomier Filter: an efficient
data structure for static support lookup tables.

IJRSET NOVEMBER 2016 Volume 3, Issue 11 Pages: 18-27
In Proceedings of the 15th annual ACM-
SIAM symposium on Discrete Algorithms,
30-39.

[11] Wei, J., Jiang, H., Zhou, K. and Feng, D.
2013. Efficiently Representing Membership
for Variable Large Data Sets. In Proceedings
of the IEEE Transactions on Parallel and
Distributed Systems, Vol.25, 960-970.

[12] https://www.wikipedia.org

[13] Bhagwat D., Eshghi, Long D. D. E., and
Lilibridge M., “Extreme binning: Scalable,
parallel deduplication for chunk-based file
backup”, Proceedings of the 7th IEEE
International Symposium on Modelling,
Analysis and Simulation (MASCOTS), 1-9,
2009.

[14] Zhu, B., Li, k., and Patterson, H. 2008.
Avoiding the disk bottleneck in the Data
Domain deduplication file system. In
Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST),
269-282.

[15] Lillibridge, M., Eshghi, K., Bhagwat, D.,
Trezise, G. and Camble, P. 2009. Sparse
indexing: Large scale, inline deduplication
using sampling and locality. In Proceedings of
the 7th USENIX Conference on File and
Storage Technologies (FAST), 111-123.

[16] Can, W., Qin, Z. G., Yang, L. and Juan,
W. 2012. A Fast Duplicate Chunk Identifying
Method Based on Hierarchical Indexing
Structure. In Proceedings on IEEE
International Conference on Industrial Control
and Electronics Engineering, 624-627.

[17] Wildani, A., Miller, E. L., and Rodeh, O.
2013. HANDS: A Heuristically arranged non-
backup inline
deduplication system. In Proceedings of the
IEEE 29th International Conference on Data
Engineering (ICDE), 446-457.

[18] Sengar, S.S. and Mishra, M. 2012. E-
DAID: An Efficient Distributed Architecture
for inline data deduplication. In Proceedings
of the IEEE International Conference on

Communication Systems and Network
Technologies (CSNT), 438-442.

[19] Xia, W., Jiang, H., Feng, D. and Hua, Y.
2011. SiLo: a similarity-locality based near
exact deduplication scheme with low RAM
overhead and high throughput. In Proceedings
of the USENIX Annual Technical Conference
(ATC), 26-28.

[20] Andre, B., Dirk, M. and Kaiser, J. 2013.
Block locality caching for data deduplication
system. In Proceedings of the 6th ACM
International Systems and Storage
Conference, 19-24.

