
IJRSET September 2015 Volume 2, Issue 7 Pages: 42-47

CLUSTERING OF SOFTWARE MODULES WITH MULTIPLE
VIEWS FOR EFFECTIVE MAINTENANCE COST

1 R. Nandhini
1 Assistant Professor

1 Department of Information Technology
1 Sree Saraswathi Thyagaraja College,

1 Pollachi.

__
ABSTRACT: Software clustering is the process of combining multiple systems or applications
into a cluster that act as a single system. The subsystems are reverse engineered to extract design
data. When large software systems are reverse engineered there is possibility of the system
decomposition hierarchy. This hierarchy shows the system’s subsystems, the contents of the
subsystems like modules or other subsystems. The Bunch’s software clustering tool shows how
meta-heuristic search algorithms can be applied to the software clustering problem, successfully.
But some uncertainty prevails whether Bunch provides optimal solution. The optimal solution
for trivial systems may be achieved using an exhaustive search. Hence a clustering of software
modules method with single graph is used in the existing method to obtain optimal solution by
low coupling and high cohesion criterion. The advantage of using spectral methods is that the
results this technique produced are within a known factor of the optimal solution. But the
spectral single graph shows all the clusters in a single MDG which is complex and costly to
maintain. The single graph view shows every system as a node which enables further complex
cluster views. This study proposes a method called clustering of software modules with multiple
graph views which improves the optimal efficiency and reduces the complexity. In this study the
usage of multiple graphs for separate systems also reduces the maintenance cost to a greater
extent.

Keywords: [software clustering, maintenance, Module Dependency Graph].

__
1. INTRODUCTION

Software clustering tools create
abstract structural views of the entities and
relations present in the source code. These
views, which can be considered a ‘‘road map’’
of a system’s structure, can help software
engineers cope with the complexity of
software development and maintenance. The
typical design extraction process is to
determine the entities and relations in the

source code and store the resultant data in
either a database or a set of files. This data can
then be queried by the user to obtain
information about the code structure. In this
work readily available source code analysis
tools are used for this purpose. After the
entities and relations have been stored in a
database, the database can be queried to derive
a Module Dependency Graph (MDG). The
MDG is considered to be a directed graph that
represents the software modules (e.g., classes,

IJRSET September 2015 Volume 2, Issue 7 Pages: 42-47
files, packages) as nodes, and the relations
(e.g., function invocation, variable usage,
class inheritance) between modules as directed
edges. Once the MDG is created, clustering
algorithms can be used to partition the MDG.
The clusters in the partitioned MDG represent
subsystems that contain one or more modules,
relations, and possibly other subsystems. But
the single view graph MDG increases the
maintenance problems. Hence clustering with
multiple views can be introduced to reduce
cost.

1.1 Problem statement
Software clustering is an efficient

method in computing but even the efficient
method might have problems. The software
systems are needed to be reverse engineered in
order to extract data or to troubleshoot a
system connected to the cluster. During this
process the software cluster enables system
decomposition hierarchy which creates
breakdown of network into individual
systems. The Bunch software clustering tool
applies meta-heuristic search algorithms such
as hill-climbing, simulated annealing and
genetic. However there are limitations in
meta-heuristic search algorithms such as their
inability to guarantee the proximity of their
solutions to the optimal solution and poor
results because they converge to local
optimum solutions that are far from the
optimal one. The spectral single view graph
provides global optimal solution but due to a
single MDG the cost of maintenance
increases. Hence an efficient clustering
algorithm with multiple views is proposed to
overcome the problem.

2. PROPOSED SYSTEM
In the proposed system, in order to

reduce the maintenance cost of the clustering

tools and to reduce the complexity in the
single graph view, clustering of software
modules of the data with multiple graphs is
used. Spectral Multi-view is proposed such
that the complex graph is divided using
suitable partitioning techniques to produce
multiple graph views. The partitioning helps
in the aligning multiple views individually to
every system in the cluster. This method
increases the efficiency of every cluster that it
reduces the complexity in viewing the graph.
The partitioning of the graph enables the
software of the cluster to be fragmented to
simpler individual systems with each one
assigned a specific solution. These simpler
multiple graphs are easier to analyze and can
be reverse engineered whenever the need
arises. Multi-view learning is utilized in many
other situations. In scientific publication
classification, a citation network over the
articles, where each node indicates an article
and each directed link a citation from one
article to another can be constructed. A
coauthor network over the articles, where
there is a link between two articles if they
have an author in common can also be
constructed. In social network analysis, there
are multiple types of relationships among
individuals. For example, they can be email
networks, organization hierarchy, and
collaboration. As in web categorization, for
clustering or classifying scientific publications
or individuals, the consideration to utilize
several networks together rather than a single
network only can be utilized. The problem of
software clustering can be avoided by this
fragmentation while using these simpler
graphs the maintenance cost is reduced
significantly.
 Low maintenance cost
 Simple partitioning of graph can be

easy to view

IJRSET September 2015 Volume 2, Issue 7 Pages: 42-47
3. Architecture diagram

Figure 2- Clustering of software modules of two different directed graphs with the shaded systems
representing the different vertices

Algorithm
1. Initialize the tool
2. Fix the initial adjustments
3. Load the eclipse-ant module
4. Implement the eclipse-ant module
5. Start the source file loading
6. Copy the jar files in Lib folder
7. Paste that jar file in C:\Program
Files\Java\jdk1.7.0_60\jre\lib\ext
8. Check initial setup for identifying the
packages and interfaces
9. Check initial setup for identifying the object
class
10. Add the list of components required
11. Open cmd and goto project location
12. Initialize project files
13. Assign the location for saving the result

14. Run the project using ‘java Main’
command
15. Analyze the result

4. BUNCH SOFTWARE
CLUSTERING TOOL
ALGORITHM

The Bunch tool implements a variety
of meta-heuristic search algorithms to cluster
graphs. Bunch’s hill-climbing clustering
algorithm starts by generating a random
partition of the MDG. Modules from this
partition are then rearranged systematically in
an attempt to find an ‘‘improved’’ partition. If
a better partition is found, the process iterates,
using the improved partition as the basis for

A

C

B

H

G
D

E

F

A

C
B

H

G
D

E

F

IJRSET September 2015 Volume 2, Issue 7 Pages: 42-47
finding even better partitions. The hill-
climbing search algorithm eventually
converges when no improved partitions of the
MDG can be found. The Bunch genetic
algorithm (GA) uses operators such as
selection, crossover, and mutation to
determine a ‘‘good’’ partition of the MDG.
This technique is especially good at finding
solutions quickly, but we have found that the
quality of the results produced by Bunch’s
hill-climbing algorithms is typically better.
Although each of Bunch’s search algorithms
works differently, they all examine partitions
from the very large search space of MDG
partitions. Note that the number of MDG
partitions, the Bell number, is O (N!), where N
is the number of modules in the MDG. Thus,
Bunch’s search algorithms require a way to
determine if one MDG partition is ‘‘better’’
than another. To address this need we define
an objective function, which is called as
Modularization Quality (MQ), to evaluate the
relative quality of MDG partitions. The MQ
function works by calculating a value which is
called as the Cluster Factor (CF) for each
cluster. Given an MDG partitioned into k
clusters, MQ is calculated by summing CF for
each cluster of the partitioned MDG. CFi for
cluster i (1 6 i 6 k) is defined as a normalized
ratio between the total weight of the internal
edges (edges within the cluster) and half of the
total weight of external edges. The weight of
the external edges is split in half in order to
apply an equal penalty to both clusters that are
connected by an external edge. We refer to the
internal edges of a cluster as intra-edges, and
the edges between two distinct clusters i and j
as inter- edges. If edge weights are not
provided by the MDG, we assume that each
edge has a weight of 1. The MQ measurement
design is based on the assumption that good
software systems consist of a set of highly-
cohesive subsystems clusters in the MDG that
are loosely coupled together.

Where,

The clustering problem, as solved by Bunch,
can be stated as a good partition of an MDG
graph. We use the term partition in the
traditional mathematical sense, that is, the
decomposition of a set of elements such as all
nodes of a graph into mutually disjoint
clusters. By a good partition" we mean a
partition where highly interdependent modules
(nodes) are grouped in the same subsystems
and, conversely, independent modules are
assigned to separate subsystems. Finding a
good graph partition involves systematically
navigating through a very large search space
of all possible partitions for that graph. Bunch
treats graph partitioning or clustering as an
optimization problem. The goal of the
optimization is to maximize the value of an
objective function, called Modularization
Quality (MQ). MQ determines the quality of
an MDG partition quantitatively as the trade
between interconnectivity (i.e., dependencies
between the modules of two distinct
subsystems) and intra-connectivity (i.e.,
dependencies between the modules of the
same subsystem). This trade is based on the
assumption that well-designed software
systems are organized into cohesive
subsystems that are loosely interconnected.
Hence, MQ is designed to reward the creation
of highly cohesive clusters, and to penalize
excessive coupling between clusters. All
values of MQ are between -1 (no internal
cohesion) and +1 (no external coupling). This
algorithm is not practical for MDGs with a
large number of modules, because the number
of partitions of a graph grows exponentially
with respect to its number of nodes. Thus,
Bunch uses more efficient search algorithms
to discover acceptable sub-optimal results.
These algorithms are based on hill-climbing
and genetic algorithms. Meta-heuristic is a
higher-level procedure or heuristic designed to
find, generate, or select a lower-level
procedure or heuristic (partial search
algorithm) that may provide a sufficiently

IJRSET September 2015 Volume 2, Issue 7 Pages: 42-47
good solution to an optimization problem,
especially with incomplete or imperfect
information or limited computation capacity.
Meta-heuristics sample a set of solutions
which is too large to be completely sampled.
Meta-heuristics may make few assumptions
about the optimization problem being solved,
and so they may be usable for a variety of
problems. Compared to optimization
algorithms and iterative methods, meta-
heuristics do not guarantee that a globally
optimal solution can be found on some class
of problems. Many meta-heuristics implement
some form of stochastic optimization, so that
the solution found is dependent on the set of
random variables generated. By searching
over a large set of feasible solutions, meta-
heuristics can often find good solutions with
less computational effort than algorithms,
iterative methods, or simple heuristics. As
such, they are useful approaches for
optimization problems.

5. RESULTS AND DISCUSSION
In this section, the performance of the

existing and the proposed system is compared.
In the existing system, the meta-heuristic and
clustering of software modules with single
graph is used. In the proposed system the
clustering of software modules with multiple
graphs is used to reduce complexity.
Evaluation of software clustering algorithms is
typically done by comparing the clustering
results to an authoritative decomposition
prepared manually by a system expert. A well-
known drawback of this approach is the fact
that there are many, equally valid ways to
decompose a software system, since different
clustering objectives create different
decompositions. Evaluating all clustering
algorithms against a single authoritative
decomposition can lead to biased results.

CONCLUSION
The clustering algorithms are used to

simplify the server applications into smaller
clusters to enable higher efficiency denoted by
the optimal global solution. The existing

method of bunch clustering tool uses the meta-
heuristic approach to analyze the functioning
of the clusters which is called as spectral
clustering. The spectral clustering uses a
single graph view which is greatly efficient for
small no of clusters. But when the number of
clusters in the system increases the graph
becomes complex thus affecting the optimal
solution. This approach requires separate
partitioning methods to simplify the view but
still the system could not attain optimum
solution. The lack of a global solution makes
the clusters to be more time consuming and
thus the performance degrades. As the result
of this, the maintenance cost also increases.
Hence the enhanced method should be
implemented. Clustering of software modules
method is used to overcome the short comings
of the meta-heuristic search algorithm. The
clustering of software modules initially uses
the single graph view model which provides
global solution compared to the Bunch
software clustering. But due to the usage of
single graph to analyze an entire cluster the
system lacks simplicity and causes high
maintenance cost. Hence the clustering of
software modules with multiple graph view
model is introduced which partitions the
single complex graph into smaller multiple
graphs. Thus the multiple view method
reduces complexity as well as maintenance
cost to a greater extent compared to the
existing model. The system can be enhanced
to fit into the individual users in a more
affordable cost.The security issues are also a
major concern for further research. The
security threat is very high in cluster devices.
But the cluster devices, at times make this as
an advantage to analyze their security. The use
of enhanced features additionally in the near
future may help to improve the security of the
clusters. So still there exists room for
enhancement.

REFERENCES
[1] N. Anquetil, A comparison of graphs of
concepts for reverse engineering. In:

IJRSET September 2015 Volume 2, Issue 7 Pages: 42-47
Proceedings of the International Workshop on
Program Comprehension, 2000.
[2] N. Anquetil, T. Lethbridge, Recovering
software architecture from the names of
source files. In: Proceedings of Working
Conference on Reverse Engineering, 1999.
[3] B. Mitchell, S. Mancoridis. Craft: a
framework for evaluating software clustering
results in the absence of benchmark
decompositions. In: Proceedings of the
Working Conference on Reverse Engineering,
2001.
[4] J. Clark, J.J. Dolado, M. Harman, R.
Hierons, B. Jones, M. Lumkin, B.S. Mitchell,
S. Mancoridis, K. Rees, M. Roper, M.
Shepperd, Reformulating software
engineering as a search problem Journal of
IEE Proceedings Software 150 (3), 161–175,
2003.
[5] D. Doval, S. Mancoridis, B. Mitchell,
Automatic clustering of software systems
using a genetic algorithm. In: Proceedings of
Software Technology and Engineering
Practice, 1999.
[6] Q. Han, Y. Ye, H. Zhang, J. Zhang, on
approximation of max-vertex-cover. In: 17th
International Symposium on Mathematical
Programming in Atlanta, Georgia, 2000.
[7] R. Kannan, S. Vempala, A. Vetta, on
clusterings: good, bad and spectral. In:
Proceedings of 41st Symposium on
Foundations of Computer Science, FOCS 00,
Redondo Beach, CA, 2000.
[8] J. Korn, Y. Chen, E. Koutsofios, and
Chava: reverse engineering and tracking of
Java Applets. In: Proceedings of the 6th
Working Conference on Reverse Engineering,
pp. 314–325, 1999.
[9] D. McWherter, M. Peabody, W.C. Regli,
A. Shokoufandeh, Transformation invariant
shape similarity comparison of models. In:
Proceedings of ASME Design Engineering
Technical Conferences, 2000.
[10] S. Russell, P. Norvig, Artificial
intelligence: a modern approach Series in

Artificial Intelligence, Prentice Hall,
Englewood Cliffs, NJ, 2001.
[11] K. Sartipi, K. Kontogiannis, Component
clustering based on maximal association. In:
Proceedings of Working Conference on
Reverse Engineering (WCRE 01), 2001.
[12] J. Shi, J. Malik, Normalized cuts and
image segmentation, IEEE Transactions on
Pattern Analysis and Machine Intelligence 22
(8), 888–905, 2000.
[13] V. Tzerpos, R.C. Holt, ACDC: an
algorithm for comprehension driven
clustering. In: Proceedings of the Working
Conference in Reverse Engineering (WCRE
00), 2000.
[14] A. Ando, T. Zhang, Learning on graph
with Laplacian regularization, Advances in
Neural Information Processing Systems, MIT
Press, Cambridge, MA, 2000.
[15] A. Argyriou, M. Herbster, M. Pontil,
Combining graph Laplacians for semi-
supervised learning Advances in Neural
Information Processing Systems, MIT Press,
Cambridge, MA, 2006.
[16] S. Rauping, T. Schefier, Learning with
multiple views, Proc ICML Workshop on
Learning with Multiple Views, 2005.
[17] D. Zhou, J. Huang, B. Schaolkopf,
Learning from labeled and unlabeled data on a
directed graph, Proc 22th International
Conference on Machine Learning, 2005.
[18] C. Castillo, D. Donato, L. Becchetti, P.
Boldi, M. Santini, S. Vigna, A reference
collection for web spam, SIGIR Forum, 2006.
[19] M. Jordan, A. Ng, Y. Weiss, On
clustering of software modules: analysis and
an algorithm. In: Advances in Neural
Information Processing Systems, number 14,
2001.
[20] X. Zhu, Z. Ghahramani, J. Lafferty,
Semi-supervised learning using Gaussian
fields and harmonic functions Proc 20th
International Conference on Machine
Learning, 2003.

