
IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

1

A REVIEW ON DATABASE MIGRATION STRATEGIES,
TECHNIQUES AND TOOLS

1 M. Elamparithi, 2 Dr. V. Anuratha
1&2 Assistant Professor

1&2 Department of MCA
1&2 Sree Saraswathi Thyagaraja College

1&2 Pollachi

Abstract:-
A Relational Database Migration

(RDBM) has constantly complex, tedious,
and amplified procedure because of
heterogeneous structures and information
sorts of RDB. This paper shows the sorted
writing audit of existing relocation methods,
overviews the interpretation strategies,
furthermore talks about specialized issues for
making the movement process compelling.
This review assesses the impact of existing
migration strategies and shows how it has
been designed according to recent trends. In
software industries plenty of Database
Migration Tools (DBMTs) are available, but
finding effective one is still risky task.
Hence, we have reviewed some of Database
Migration Tools (DBMTs) and suggested
several basic criteria for evaluating migration
toolkits. The discussion of these issues will
help the researchers and also database
practitioner in planning migration projects.

Keywords: - Database migration, schema
translation, database migration strategy,
migration techniques and database migration
tool

1. INTRODUCTION
Migration of Relational Database

(RDB) means that data from source RDB to

target RDB which includes schema
translation and data transformation. Since
1990 so many approaches starts with legacy
migration after one decade due to growth of
information technology many software
industries are developed their own migration
process tool for their essential applications.
Earlier researchers Barron C et al., (1974)
summarized reasons where the purposes of
database migrations are suggested. The core
reason of need of migration is upgrading the
existing system into developed system
according to industry requirements. The
impending problem is redefined of existing
database and storage system in terms of
complex language. In the industry rule,
during the migration when the source and
target databases are structurally different or
data is inconsistent across multiple data
sources. Due to this problem only the
researches and development of migration
tools are emerged in later years. Joseph R.
Hudicka (1998) provides complete solution
of data migration methodology for migration
project. As his view the entire database
migration processes are divided into several
phases which are completed one by one. In
his methodology, the database migration
deals with row counts, columns counts and
related statistics to the source database. The
disadvantage of his method is does not

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

2

migrate null and numeric values and error has
been occurred for key constrain data fields.
Relational database migration has not been
subject to broad academic research for past
one decades but due to tremendous advent of
Open Source Database Management System
(OSDBMS), subsequently the database
migration workflow in proposed and which
are all target system for Relational Database
Migration (RDBM). Based on detailed
analysis of the existing literature review on
migration strategies and techniques, the
successful Relational Database Migration
(RDBM) among heterogeneous databases
including Open Source Databases (OSDBs)
are still to delve. However, this paper
examines most of the database migration
primitive and recent strategies, approaches,
models and toolkits. The rest of this paper is
organized as follows: Section 2 summarizes
the impact of primitive strategies such as
legacy migration and reverse engineering.
Section 3 different migration strategies and
techniques related to Relational Database
Migration (RDBM). Section 4 presents the
different types of Database Migration
Toolkits (DBMTs) and evaluation criteria.
Section 5 is about conclusion and future
work.

2. PRIMITIVE STRATEGIES
2.1 Legacy Migration

Legacy relocation procedure is an
essential component when completing an
Information System. A significant part of the
writing on database relocation is to some
degree suitably fervent to legacy movement.
Relocating of these frameworks can be a

period serious and to a great degree
extravagant errand so it makes sense that
associations seek after to streamline the
movement process and to make it as practical
as could be allowed. These systems differ
substantially from modern enterprise
architectures since the presentation, business
logic, and data access tiers are generally all
part of the same tier. Legacy system
migration often encompasses a great number
of research areas including reverse
engineering, business reengineering, schema
mapping, application development, and
translation. A technical report from CMU-
SEI (Weiderman et al., 1997) has been
developed an enterprise framework for the
legacy migration systems. This acts as a
guide for organizations planning software
evolution efforts, such as migrating legacy
systems to more distributed open
environments, as shown in Figure 1. A legacy
migration life cycle was also created, which
includes the following procedures:
• Before Migration: plan, assess and prepare
o Assess hardware, software and
network readiness and plan for future
o Clean up by eliminating useless data,
consolidating resources, monitoring
everything
• During Migration: prototype, pilot and
deploy migration
o Use powerful database modeling to
simulate migration, resolving issues before
commit
o Track migration
 After migration: maintain and manage
new environment

Figure.2.1. A framework for the legacy migration

Legacy
System Migration

Target
System

Software
Engineering

Organization
Project

Technologi
es

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

3

Legacy migration has been classified with
well-defined interfaces, applications, and
database services. For legacy migration, user
and system interfaces are separate modules
at the same time applications and database
services are not separable. Legacy migration
strategies should be easy to apply, fast to
implement, and be widely applicable to
industry software projects. An important
issue of this system is difficult to
incorporate with newer system such as open
source operating systems as having of non-
extensibility, incompatibility, and less-
openness of the underlying hardware and
software of the legacy systems (Bisbal et al.,
1999). Major disadvantage is to find and
separate business logic from presentation
and data logic and also hard to manipulate
and retrieve data because of the redundancy.
Legacy systems and migrations are still alive
because of their distinct characteristics and
good pedigree. However, it is possible to
either eliminate or integrate the legacy

systems by following effective migration
strategy and appropriate migration tools.
2.2 Database Reverse Engineering
(DBRE)

Reverse engineering is the primitive
procedure generally utilized as a part of
programming designing procedure. It is the
first stride on relocation way through
examination of the source social database
framework. The importance of figuring out
is the procedure of database code,
documentation, and conduct to recognize its
segments and their conditions to relocate
and make the objectives framework ideas
and configuration data (SEI, 2004). The
disadvantage of this process is the subject
system cannot to be modified. In this
technique the source system considered as to
be Data Dictionary (Source and Target
Databases) and DDL (Data Definition
Language). Database Reverse Engineering is
deals with the migration of source database
design specification (Schema information)
and tasks of understanding databases.

Figure.2.2. A framework for Database Reverse Engineering (DBRE)

Database Reverse Engineering (DBRE)
often used identical with reverse engineering
the data structure. In software industries the
reverse engineering process is a
methodology to analyze all schema
information of the source database system’s
and gains a deeper understanding of their
internals by the process of DDL Extractions,
and converted into logical to conceptual
schema for the target database as shown in

figure 2. During this process, one has to
identify the volume of data to be converted,
extract the current data structure (schema) as
well as relation between data and system’s
procedural components and complete and
update documentation fragments. Database
reverse engineering provides a valuable
analysis toolkit and points useful resources
inside and outside the system that have to be
examined and questioned. However, reverse

Physical
Schema

DDL Code
Extraction

Conceptualization
Process

Logical
Schema

Conceptual
Schema

Source
System

Target
System

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

4

engineering data structures still is a complex
task. This is the major issue of the DBRE.
Due to this complexity of data structures,
successful migration is still to examine and
for this issue, database analyst are forced to
make arbitrary choices, to develop new
technique for successful migration.

3. DATABASE MIGRATION
STRATEGIES AND
TECHNIQUES

This chapter introduces different
migration strategies and techniques related
to database migration. Section 3.1 discusses
various strategies to database migration

whereas section 3.2 discusses contemporary
conversion techniques.

3.1 Database Migration Strategies:
To apply progressive database

technology, software industries are faced
with the challenge of migrating data and in
most cases, applications as well. A several
database migration strategies exist in
software industries which can present
information about database conversion and
applications. The following table is showing
a literature survey of database migration
model strategies.

A
TABLE 3.1 DATABASE MIGRATION MODEL STRATEGIES

ll different approaches are categorized into
three basic strategies related to database
migrations. First one is for handling data
stored in database through OO/XML
interfaces. Second one is connecting existing
source relational database to a conceptually
different target database system. Third is
migrating completely both schema and data
in source database to equivalent target
database system. The first and second
strategies are deal with schema translation

only. The advantage of first approach is that
the relational data is still accessible as
relational database; the disadvantage is the
inefficiency of having translated data
manipulation language (DML) commands
between the two layers. The second strategy
is to implement more of a migration rather
than simply to overlay an interface. In this
case, relational technology is migrated to
objects. The most significant step in this
process is to derive an object-oriented

Author Database Migration Model Strategies

Fishman et al., (1987)
Object Oriented Database Management
System

Hardwick and Spooner. (1989)
Using Object Technology to Engineering
Applications

Wilkinson et al., (1990) Object Oriented Data Management System

Hainaut, J. (1991)
Database Reverse Engineering Models and
Techniques

Crowe. M. K. (1993) Object System over Relational Databases
Andreas Meier et al., (1994) Hierarchical to Relational Database
Ian Graham. (1995) Relational to Object Technology
Monk, S. et al., (1996) Relational to Object Oriented Database
Andreas Behm et al., (1997) Relational to Object Oriented System
Yury Bychkov and Jens H. Jahnke (2001) Legacy Databases to XML
Fong, J. and Cheung (2005) Relational to XML Database

Abdel Salam Maatuk. Et al., (2008)
Relational to Object Oriented Relational
Database(ORDBs)

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

5

scheme from a relational scheme from the
existing source system. Due to substantial
investments in many traditional relational
databases part of their data may need to be
formatted and implemented in a new
different platform. Hence, constructing a
gateway interface between the two databases
might be preferred. Migrating to a new
DBMS might be a good decision to make if
the existing system is too expensive to
maintain. The impact of the above three
basic strategies are summarized the
following subsequent sections.

3.1.1 Strategy 1: Migration through
Object Oriented Interfaces

Data may be required to be
processed in object/XML form and stored in
relational form based on the concept of
object for programs and database for
persistence. This process requires object-
to/from-database mapping techniques; such
mapping is bi-directional on demand of
updating a relational database using Object
Oriented Interfaces. This is the reverse
direction from where object-based schemas
are translated into a database schema. While
objects are associated via references, data in
source database tables are linked through the
values of primary keys and foreign keys. A
single object might be represented by
several tuples in several tables, and
therefore, joining these tables is required for
queries. This constant conversion leads to a
semantic gap between the two different
paradigms. To avoid this, developers have to
write large amounts of code to map objects
in programs into tuples in a database, which
can be very time-consuming to write and
execute or to use mapping query
systems/middleware, which is a software
layer that links OO Programming Languages
(OOPLs) concepts to data stored in RDBs
through ODBC or JDBC drivers. However,
mapping using middleware requires time for
schema mapping, on each association that
stored data are accessed.

3.1.2 Strategy 2: Database Integration
A connection can be established

between source and other target databases
which allow the applications built on top of
a new DBMS to access both relational and
object/XML DBMSs, giving the impression
that all data are stored in one database. This
represents a simple level of database
integration (Christine Parent and Stefano
Spaccapietra, 2000) between systems. This
is achieved using a special type of software
called gateways, which support connectivity
between DBMSs and do not involve the user
in SQL and database schema. Hence, queries
and operations are converted into SQL and
the results are translated into target objects.
Many applications use two or more
underlying databases. On retrieving data
from both systems, the unification of their
two schemas is necessary by providing two-
way mapping. During integration, systems
cooperate autonomously by creating a
unified and consistent data view for several
databases, hiding heterogeneities and query
languages. Most commercial DBMSs such
as Oracle, MySQL and SQLServer provide
flexibility of mapping and gateways
construction among heterogeneous
databases.

3.1.3 Strategy 3: Database Migration
Migration of a relational database

into its equivalents is usually accomplished
between two databases according the
literature (Alhajj and Polat, 2001). The first
database is a relational database, called the
source, and the second, called the target,
which represents the result of the migration
process. In addition, the process is
performed with or without the help of an
intermediate conceptual representation, e.g.,
an ER model as a stage of enrichment. The
input source schema is enriched
semantically and translated into a target
schema. Data stored in the source database
are converted into the target database based
on the target schema. Generally, relations

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

6

and attributes are translated into equivalent
target objects. Foreign keys may be replaced
by another domain or relationship attributes.
Weak entity relations may be mapped into
component classes, multi-valued or
composite attributes inside their parent
class/entity. Other relationships, such as
associations and inheritance, can also be
extracted by analyzing data dependencies or
database instances. In data conversion
(Abdelsalm Amaraga Maatuk, 2009),
attributes that are not foreign keys become
literal attribute values of objects, elements
or sets of elements. Foreign keys realize
relationships among tuples, which are
converted into value-based or object
references in a target database. The
challenge in this process is that the data of
one relation may be converted into a
collection of literal/references rather than
into one corresponding type. This is because
of the heterogeneity of concepts and
structures in the source and target data
models.

3.2 Translation Techniques: Existing
techniques can be classified into two types:
(i) Source-to-Target (S2T), including flat,
clustering and nesting translation
techniques, and (ii) Source-to-conceptual-to-
target (SCT) translation. In some of these
techniques, data might be converted based
on the resulting target schema.

3.2.1 Source-to-target (S2T) Technique:
This type of technique translates a physical
schema source code directly into an
equivalent target. However, as the target
schema is generated using one-step mapping
with no ICR for enrichment, this technique
usually results in an ill- designed database as
some of the data semantics are ignored. This
approach could take the following forms:
 Flat Technique: This technique
converts each relation into object class/XML
element in the target database (Wang C et
al.,, 2006). FKs are mapped into references

to connect objects. However, the flattened
form of RDBs is preserved in the generated
database, with which object-based model
features and the hierarchical form of XML
model are not exploited. This means that the
target database is semantically weaker and
of a poorer quality than the source.
Moreover, creating too many references
cause degraded performance during data
retrieval.
 Clustering Technique: This
technique is performed recursively by
grouping entities and relationships together
starting from atomic to construct more
complex entities until the desired level of
abstraction is achieved(Sousa et al., 2002).
A strong entity is wrapped with all of its
direct weak entities, forming a complex
cluster labeled with the strong entity name.
This technique works well when the aim is
to produce hierarchical forms with one root.
This technique may reduce search time by
avoiding join operations, and thus speeding
up query processing, however, it may lead to
complex structures and is prone to errors in
translation. In addition, materializing
component entities within their parent/whole
entities may cause data redundancy, the loss
of semantics and the breaking of
relationships among objects.
 Nesting Technique: This technique is
uses the iterated mechanism of a nest
operator to generate a nested target structure
from tuples of an input relation. The target is
extracted from the best possible nesting
outcome. However, the technique has some
limitations, e.g., mapping each table
separately and ignoring integrity constraints.
Besides, the process is quite expensive, as it
needs all tuples of a table to be scanned
repeatedly to get the best possible nesting.

3.2.2 SCT Technique: This type of
technique enriches a source schema by
semantics that might not have been clearly
expressed in it and their inter-relationships
(Alajj et al., 2003). Then, the schema is

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

7

translated from logical into conceptual
through recovering the domain semantics
(e.g., primary keys, foreign keys,
cardinalities, etc.) and making them explicit.
Finally, the results are represented as a
conceptual schema using database reverse
engineering (DBRE), which can be
translated into the target effectively. In this
way the technique results in a good well-
designed target database.

4. DATABASE MIGRATION
TOOLS (DBMTS)

A number of prototypes and tools
have been developed to facilitate the
migration of relational databases into target
databases. DBMTs presented a system,
called the knowledge extraction system
(KES), for generating an EER model from
RDBs. KES has been developed to extract

domain semantics by analyzing the RDB
schema and data instances. However,
various semantic constraints, schema-
mapping constructs and data migration
techniques were not addressed adequately in
this work. In later years plenty of tools are
arrived for database migrations. In software
industries, one of the major problems is
ensuring quality database administration the
tasks connected to a migration workflow is
diverse and complicated. Doing all of them
manually requires plenty of time and a
migration team highly experienced in the
source as well as the target system. As both
factors are not available in most situations,
migration tools may come handy and should
be considered to ease the migration
workload. Table 2 presents some examples
of database migration tools (Jutta
Hortsmann, 2005).

S.No Name Company Source From To
Operating

System

1
OSDM
Toolkit

Apptility Open
Oracle, SyBase,

Informix, DB2, MS
Access, MS SQL

PostgreSQL&
MySQL

Windows,
Linux, Unix
& Mac OS

2
DB

Migration
Akcess Closed

Oracle & MS
SQL

PostgreSQL&
MySQL

Windows

3
Mssql2
Pgsql

OS Project Open MS SQL PostgreSQL Windows

4
MySQL

Migration
Toolkit

MySQL AB Open
MS Access &

Oracle
MySQL Wndows

5
MySQL

Migration
Toolkit

Intelligent
Convertors

Closed
MS Access, MS
SQL, Dbase &

Oracle
MySQL Windows

6
Open

DBcopy
Puzzle ITC Open Any RDB* Any RDB* OS

Independent

7
Progression

DB
Versora Open MS SQL

PostgreSQL,
MySQL & Ingres

Linux &
Windows

8 Shift2Ingres OS Project Open Oracle & DB2 Ingres
OS

Independent

9 SQLPorter
Real Soft

Studio
Closed

Oracle, MS SQL,
DB2 & Sybase

MySQL
Linux,

Mac OS &
Windows

10 SQLWays Ispirer Closed All Relational PostgreSQL & Windows

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

8

Databases MySQL

11

SwisSQL
Data

Migration
Tool

AdventNet Closed
Oracle, DB2, MS
SQL, Sybase &

MaxDB
MySQL Windows

12
SwisSQL
SQLOne
Console

AdventNet Closed
Oracle, MSSQL,
DB2, Informix &

Sybase

PostgreSQL &
MySQL

Windows

13 MapForce Altova Closed

SQL Server,
DB2, MS Access,

MySQL &
PostgreSQL

SQL Server, DB2,
MS Access &

Oracle

Windows,
Linux &
Mac OS

14
Centerprise

Data
Integrator

Astera Closed

SQL Server,
DB2, MS Access,

MySQL &
PostgreSQL

SQL Server, DB2,
MS Access,
MySQL &

PostgreSQL

Windows

15 DBConvert DB Convert Closed

Oracle, DB2,
SQLite, MySQL,
PostgreSQL, MS
Access & Foxpro

Oracle, DB2,
SQLite, MySQL,
PostgreSQL, MS
Access & Foxpro

Windows

TABLE 4.1 DATABASE MIGRATION TOOLKITS

Senior researchers Bin Wei, and Tennyson
X. Chen (2012), developed Data Migration
Tool (DMT) with five criteria for US
National Oceanic and Atmospheric
Administration (NOAA) that need to be
considered when evaluating a Data
Migration Tool (DMT).
The five criteria’s are
1. Types of database the DMT
supports, If does not support the database
from or to which users need to perform the
migration.
2. How the database transfer is
configured through the DMT’s interface.
This configuration will determine whether
the data transfer can be executed repeatedly.
3. DMT should checks database
integrity before execute a data transfer.
Sometimes database migration operation
fails because of database integrity violation
among the data.
4. How well the DMT incorporates
customized data transfer requirement.

5. Ensuring the correctness of a
completed database migration operation.
While the criteria outlined above are
adequate for the complex project that
developing for Database Migration Tools.
The complexity of a general extract,
transform, and load (ETL) system may go
beyond what these criteria can evaluate.
Most of the Database Migration Tools
(DMTs) are not dealt with complex data like
image, audio, and video files. Still the
investigations are needed on dealing of
complex files. In addition, some other
criteria, such as data migration performance
and cost, can be important to project
managers and DMT developers.

5. CONCLUSION
In this paper, we have presented a

deep study on existing database migration
strategies since from 1987. And also
investigation of primitive migration like
legacy migration and database reverse
engineering. We pointed out limitations of

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

9

each strategies while the migration process.
Each migration strategies have some rules to
enable the process, which might be a point
of disadvantages of migration process. The
schema translation using S2T technique, we
have note that most works for migrating to
XML are following SCT techniques,
focusing on generating a DTD schema and
data. Due to focusing on schema rather than
data, strategies either data loading or
enabling on the structure of target databases
and data remain stored in relational
databases. Moreover, there are still
shortcomings in implementations of schema
translation and data conversion mechanisms.
By using of middleware technologies, it may
lead slow performance making the process
to expensive at run-time because of dynamic
mapping between source and target
databases. Most of the database migration
techniques generate a database that to either
flat relational or has a deep level of
clustering or nesting. The existing technique
does not provide a solution for more than
one target database or for either schema or
data conversion. Besides, none of the
existing techniques can be considered as a
method of time and space complexity of
migration between source and target
databases with experimental results.
In this paper, we presented some examples
of migration toolkits. Database Migration
Tool (DBMT) kits could prove very useful
in supporting minimizing the risk, stay on
budget, keep downtime to minimum, and, in
case of failure of migration schema and data
be able to remain in source database.
Unfortunately, there is not much choice with
respect to migration tools for open source
databases. This might lead to the migration
team having to perform most of the steps
“manually”. However, database migration
is a common task that most database
administrators need to tackle. Knowing how
to evaluate and choose the right Database
Migration Tool (DMT) can be vital to the
fate of a software project that might directly

contribute to the success of a business
operation. Yet there are few guidelines in
how to evaluate the usefulness and
effectiveness of a general DBMT. We have
concluded with illustrates five basic criteria
that can serve as standards for current and
future Database Migration Tools. And this
review paper expose that developers will
serve users well in evaluating DBMT
products and for future research.

REFERENCES
[1] Andreas Meier et al., (1994).
‘Hierarchical to Relational Database
Migration’, IEEE Software, Vol. 11 Issue 3,
pp 21-27
[2] Abdelsalam Amaraga Maatuk, (2009)
Migrating Relational Databases into object-
based and XML databases. Published PhD
thesis, Nortambria University, Newcastle,
United Kingdom.
[3] Andreas Meier. (1995) ‘Providing
Database Migration Tools – A Practitioner’s
Approach’, in VLDB’95; Proceedings of the
21st International Conference on Very Large
Data Bases VLDB, Zurich, Switzerland, pp
635-641.
[4] Andreas Behm, Andreas Geppert and
Klaus R. Dittrich. (1997). ‘On the Migration
of Relational Schemas and Data to Object-
Oriented Database Systems’, Proceedings of
5th International Conference on Re-
Technologies for Information Systems,
Klagenfurt, Austria, pp 13-33.
[5] Barron C. Housel, Vincent Y. Lum, Nan
Shu (1974), ‘Architecture to an Interactive
Migration System’ in SIGFIDET 1974:
Proceedings of the 1974 ACM SIGFIDET
(now SIGMOD) workshop on Data
description, Access and Control, New York,
USA, pp. 157-169.
[6] Bin Wei and Tennyson X. Chen (2012),
‘Criterial for Evaluating General Database
Migration Tools’, [online] Research Report,
RTI Press Publication No. OP-0009-1210.
Research Triangle Park, NC:RTI Press.

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

10

http://www.rti.org/pubs/op-0009-1210
chen.pdf (Accessed 28 August 2015)
[7] Chiang, R.H.L., Barron, T.M. & Storey,
V. C. (1994) ‘Reverse Engineering of
Relational Databases: Extraction of an EER
model from a Relational Database’, IEEE
Transactions on Knowledge and Data
Engineering, Vol. 12, pp 107-42
[8] Christine Parent and Stefano
Spaccapietra. (2000) ‘Database Integration:
The Key to Data Interoperability’, in M. P.
Papazoglou. et al (Eds.), Advances in
Object-Oriented Data Modeling, The MIT
Press, pp. 221-254
[9] Crowe, M. K. (1993). ‘Object systems
over relational databases’, Information and
Software Technology Vol. 35, pp 449-61
[10] Fishman et al., (1987) ‘Iris: An object
oriented Database Management System’,
ACM Transactions on Office Information
Systems Vol. 5, pp 48-69
[11] Fong. J. and Cheung, S. K. (2005)
‘Translating relational schema into XML
schema definition with data semantic
preservation and XSD graph’, Information
and Software Technology, Vol. 47 Issue 7,
pp 437-462
[12] Hainaut, J.(1991) ‘Database Reverse
Engineering, models, techniques, and
strategies’ in ER’91; Proceedings of the 10th

International Conference on Entity-
Relationship Approach. San Mateo,
California, USA, pp 729-41
[13] Hardwick, M. & Spooner, L. (1989).
‘The ROSE data manager: using object
technology to support interactive
engineering applications’. IEEE
Transactions on Knowledge and Data
Engineering, Volume 1, Issue 2, pp 285-289
[14] Ian S. Graham and Aan Graham. (1995)
Migrating to Object Technology, 1st ed.,
Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA
[15] Jutta Horstmann. (2005) Migration to
Open Source Databases. Diploma Thesis,
Technical University Berlin, Computation

and Information Structures (CIS), Berlin,
Germany.
[16] Kathi Hogshead Davis and Peter H.
Aiken (2000), ‘Data Reverse Engineering: A
Historical Survey’, in WCRE’00;
Proceedings of the Seventh Working
Conference on Reverse Engineering,
Brisbane, QId, pp 70-78.
[17] Maatuk, Abdelsalam, Ali, Akhtar and
Rossiter, Nick (2008), ‘An Integrated
Approach to Relational Database Migration’
in IC-ICT 2008; Proceedings of
International Conference on Information and
Communication Technologies, Bannu,
Pakistan.
[18] Maatuk, Abdelsalam, Ali, Akhtar and
Rossiter, Nick (2010), ‘Converting relational
databases into object relational databases’
Journal of Object Technology, Vol. 9 Issue
2 pp 145-161.
[19] Mansaf Alam and Siri Krishnan Wasan.
(2006) ‘Migration from relational to object-
oriented database’, Journal of Computer
Science, Vol. 2 No. 10, pp. 781-784.
[20] Michael L. Brodie, Michael
Stonebraker (1994) Migrating Legacy
Systems: Gateways, Interfaces & The
Incremental Approach”, San Francisco,
California, USA, Morgan Kaufmann
Publishers, Inc.
[21] Monk, S., Mariani, J., Elgalai, b., &
comphell, H. (1996). ‘Migration from
relational to Object-Oriented Databases’,
Information and Software Technology Vol.
38, Issue 7, pp 467-75
[22] Moriarty, T. & Hellwege, S. (1998)
‘Data Migration’, Database Programming &
Design Magazine issue of 98, pp. 11 – 14.
[23] Peter McBrien and Alexandra
Poulovassilis, ‘Schema Evolution in
Heterogeneous Database Architectures, A
Schema Transformation Approach, in
CAiSE 2002; Proceedings of
14thInternational Conference on Advanced
Information Systems Engineering, Toronto,
Canada, pp 484-499

IJRSET September 2015 Volume 2, Issue 7 Pages: 11-21

11

[24] SEI (2004), Software Engineering
Institute Glossary. [online]
http://www.sei.cmu.edu/str/indexes/glossary
/(Accessed 5th December 2005).
[25] The Complete Data Migration
Methodology. [online]
http://www.dulcian.com/(Accessed 2 , 2004)
[26] Wang C, Lo A., Alhajj R., Barker, K.,
‘Novel approach for reengineering relational
databases into XML, in ICDE’06;
Proceedings of the International Conference
on Data Engineering, pp. 1284-1289.
[27] Weiderman, Nelson H. Bergey, John K.
Smith, Dennis B. Tilley, Scott R (1997)
Approaches to Legacy System
Evolution,[online] Technical Report
CMU/SEI-97-TR-014 ESC-TR-97-014,
Software Engineering Institute, Carnegie
Mellon University, Pittsburg, PA 15213.
http://oai.dtic.mil/oai/oai?verb=getRecord&

metadataPrefix=html&identifier=ADA3362
13.pdf (Accessed 23 July 2014)
[28] Wilknison, K., Lyngboek, P. & Hasan,
W. (1990). ‘The IRIS architecture and
implementation’, IEEE Transactions on
Knowledge and Data Engineering, Vol. 2,
pp 63-75
[29] Wire Ming Lim and John Harrison
(1996), ‘An Integrated Database
Reengineering Architecture-A Generic
Approach.’, proceedings of Australian
Software Engineering Conference, 1996,
Australia, pp 146-154
[30] Yury Bychkov and Jens H.Jahnke,
(2001) ‘Interactive Migration of Legacy
Databases to Net-Centric Technologies’, in
WCRE’01; Proceedings of Eighth Working
Conference on Reverse Engineering,
Stuttgart, Germany, pp 328-334,

